		ooklet Code & Serial No. तका कोड व क्रमांक B									
	PHYSICAL SCIENCE										
	nature and Name of Invigilator		Seat No.								
	Signature)	(In figures as in Admit Card)									
(1	Name)S	eat No					•••••	•••••		••••	
2. (S	Signature)			II)	n wo	rds)					
(1	Name)O	MR S	heet No.								
AF	PR - 32224			(To	be f	illed	by th	ne Ca	ndid	ate)	
Tim	ne Allowed : 2 Hours]				_					: 200	
Nur	nber of Pages in this Booklet : 28	Nı	umber of						klet :	: 100	
 1. 2. 3. 4. 	 Instructions for the Candidates Write your Seat No. and OMR Sheet No. in the space provided on the top of this page. This paper consists of 100 objective type questions. Each question will carry two marks. All questions of Paper II will be compulsory. At the commencement of examination, the question booklet will be given to the student. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as follows: To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal or open booklet. Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to missing pages/questions or questions repeated or not in serial order or any other discrepancy should not be accepted and correct booklet will be replaced nor any extra time will be given. The same may please be noted. After this verification is over, the OMR Sheet Number should be entered on this Test Booklet. After this verification is over, the OMR Sheet Number should be entered on this Test Booklet. Each question has four alternative responses marked (A), (B), (C) and (D). You have to darken the circle as indicated below on the correct response against each item. Example : where (C) is the correct response. 	 ut No. and OMR Sheet No. in the space provided his page. ut Ris and CMR Sheet No. in the space provided his page. ut Ris and CMR Sheet No. in the space provided his page. ut Ris and CMR Sheet No. in the space provided his page. ut Ris and CMR Sheet No. in the space provided his page. ut Ris and CMR Sheet No. in the first 5 minutes, you are pen the booklet and compulsorily examine it as the ead on the edge of this cover page. Do not accept lew without sicker-seal or ogen booklet. ut Ris and CMR Sheet No. in the space of questions in bed edge of this cover page. Do not accept lew without sicker-seal or ogen booklet. ut Ris and CMR Sheet Number of pages and number of questions in sover, the OMR Sheet Number be entered on this Test Booklet. may place be noted. the replaced nor any extra time will be the same the correct response. may place be normation is over, the OMR Sheet Number be entered on the correct response. may place be Normation is over, the OMR Sheet Number be entered on the correct response. may place be Normation is over, the OMR Sheet Number or puny part of the OMR Sheet, twill not be accepted and correct exit place and range place heads. may part of the OMR Sheet, twill not be accepted and correct exit place and range place heads. may part of the OMR Sheet, twill not be accepted place and range place and the and of this booklet. may may aff the Booklet and of this booklet. may may aff the OMR Sheet, twen place and place									
5. 6. 7. 8.	Your responses to the items are to be indicated in the OMR Sheet given inside the Booklet only. If you mark at any place other than in the circle in the OMR Sheet, it will not be evaluated. Read instructions given inside carefully. Rough Work is to be done at the end of this booklet. If you write your Name, Seat Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair										
9. 10.	means, you will render yourself liable to disqualification. You have to return original OMR Sheet to the invigilator at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are, however, allowed to carry the Test Booklet and duplicate copy of OMR Sheet on conclusion of examination. Use only Blue/Black Ball point pen.										
11. 12.	Use of any calculator or log table, etc., is prohibited. There is no negative marking for incorrect answers.	12.	चुकीच्या उत्तर						(1) (1)		

Physical Science Paper II

Time Allowed : 120 Minutes][Maximum Marks : 200Note : This paper contains Hundred (100) multiple choice questions. Each question
carrying Two (2) marks. Attempt All questions.

- The number of degrees of freedom of a system, comprising of an ant moving on the surface of a sphere, which is rolling on a smooth horizontal surface, is :
 - (A) 3
 - (B) 6
 - (C) 5
 - (D) 4
- A particle is projected at an angle α with respect to the horizontal axis. Its path, observed in a frame of reference moving with a velocity equal to the horizontal component of its velocity, will be :
 - (A) a straight line making an angle α with the horizontal
 - (B) a horizontal straight line
 - (C) a vertical straight line
 - (D) a straight line making an angle α with the vertical

3. A particle of mass *m* is falling freely vertically in a uniform gravitational field. The Hamilton-Jacobi equation describing its motion is :

(A)
$$\frac{1}{2m} \left[\left(\frac{\partial s}{\partial x} \right)^2 + \left(\frac{\partial s}{\partial y} \right)^2 \right] + mgz$$

+
$$\frac{\partial s}{\partial t} = 0$$

(B)
$$\frac{1}{2m}\left[\left(\frac{\partial s}{\partial x}\right)^2 + \left(\frac{\partial s}{\partial y}\right)^2 + \left(\frac{\partial s}{\partial z}\right)^2\right]$$

+
$$mgz$$
 + $\frac{\partial s}{\partial t} = 0$

(C)
$$\frac{1}{2m}\left[\left(\frac{\partial s}{\partial z}\right)^2\right] + mgz + \frac{\partial s}{\partial t} = 0$$

(D)
$$\frac{1}{2m}\left[\left(\frac{\partial s}{\partial z}\right)^2\right] + mgz = 0$$

3

- 4. The condition for generating function F, defining canonical transformations, is that the differential dF is exact. Which of the following relations does not satisfy this condition ?
 - (A) $d\mathbf{F} = \sum_{i} p_i \, \delta q_i \sum_{i} P_i \, \delta \mathbf{Q}_i$

(B)
$$d\mathbf{F} = \sum_{i} q_i \, \delta p_i + \sum_{i} \mathbf{Q}_i \, \delta \mathbf{P}_i$$

- (C) $d\mathbf{F} = \sum_{i} p_i \, \delta q_i + \sum_{i} \mathbf{Q}_i \, \delta \mathbf{P}_i$
- (D) $d\mathbf{F} = \sum_{i} q_i \, \delta p_i + \sum_{i} P_i \, \delta \mathbf{Q}_i$
- 5. If the magnetic monopole existed, then which of the following Maxwell's equations will be modified ?
 - (A) $\overline{\nabla}.\overline{D} = \rho$
 - $(B) \quad \overline{\nabla}.\,\overline{B}=0$
 - (C) $\overline{\nabla} \times \overline{\mathbf{E}} = -\partial \overline{\mathbf{B}} / \partial t$
 - (D) $\overline{\nabla} \times \overline{\mathbf{H}} = \overline{\mathbf{J}} + \partial \overline{\mathbf{D}} / \partial t$
- A conducting sphere of radius R has charge +Q on its surface. If the charge on the surface is doubled and its radius is halved, the energy associated with the electric field will :
 - (A) Increase four times
 - (B) Remain the same
 - (C) Increase eight times
 - (D) Decrease four times

- 7. The ratio of electric field vector \vec{E} and magnetic field vector \vec{H} has the dimension of :
 - (A) Inductance
 - (B) Capacitance
 - (C) Resistance
 - (D) Product of inductance and capacitance
- The value of Poynting vector at the surface of a long cylindrical wire of radius R and length L carrying a current I when its ends are kept at a potential difference of V is :
 - (A) Zero (B) $(VI)/(2\pi R^2 + 2\pi RL)$
 - (C) (VI)/($\pi R^2 L$)
 - (D) (VI)/ $(2\pi RL)$
- For a good conductor skin depth varies inversely with power of frequency.
 - (A) First
 - (B) Second
 - (C) Half
 - (D) Third

- 10. A magnetic dipole of dipole moment (\vec{m}) is placed in a non-uniform magnetic field \vec{B} . If the position vector of the dipole is \vec{r} , the torque acting on the dipole about the origin is :
 - (A) $\vec{r} \times (\vec{m} \times \vec{B})$
 - (B) $\vec{r} \times \vec{\nabla}(\vec{m} \cdot \vec{B})$
 - (C) $\vec{m} \times \vec{B}$
 - (D) $\vec{m} \times \vec{B} + \vec{r} \times \vec{\nabla} (\vec{m} \cdot \vec{B})$
- 11. A 6 cm × 4 cm rectangular wave guide is filled with dielectric of refractive index 1.25. The range of frequencies over which single mode operation will occur is :
 - (A) 2.24 GHz < f < 3.33 GHz
 - (B) 2 GHz < f < 3 GHz
 - (C) 4.4 GHz < f < 70 GHz
 - (D) 4 GHz < f < 6 GHz

- 12. In Lorentz gauge, Lorentz condition is given by :
 - (A) $\overline{\nabla} \cdot \overline{A} \frac{1}{c} \frac{\partial \phi}{\partial t} = 0$ (B) $\overline{\nabla} \cdot \overline{A} + \frac{1}{c} \frac{\partial \phi}{\partial t} = 0$
 - (C) $-\overline{\nabla} \cdot \overline{A} + \frac{1}{4\pi c} \frac{\partial \phi}{\partial t} = 0$
 - (D) $-\overline{\nabla} \cdot \overline{A} \frac{1}{4\pi c^2} \frac{\partial \phi}{\partial t} = 0$
- 13. The SI unit of the quantity $\frac{|\mathbf{E}|}{|\mathbf{B}|}$ is :
 - (A) s/m
 - (B) m/s
 - (C) c^2m/s
 - (D) c^2m^2/s
- 14. Consider an ideal rectangular wave guide (dimension ~ 4.0 cm × 2.0 cm) with vacuum inside. Plane monochromatic electromagnetic radiation having a wavelength of 6 cm is introduced in this wave guide. The radiation propagates inside the wave guide in mode :

 (A) Only TE₁₀
 (B) Only TM₁₀
 - (C) Both TE_{10} and TM_{10}
 - (D) Both TE_{10} and only TE_{01}

- 15. The ratio of skin depths of Copper for the He-Ne laser ($\lambda = 6328$ Å) to that for Nd : YAG laser ($\lambda = 1.06$ µm) is :
 - (A) 0.597
 - (B) 0.95
 - (C) 1.294
 - (D) 1.675
- 16. A particle of mass *m* is confined in a three-dimensional rectangular box of sides L, L/2 and 2 L. The third and fourth excited state energies and their degeneracies (written in brackets) are :
 - (A) 33/8 $\pi^2 h^2 / m L^2$ (1), 9/2 $\pi^2 h^2 / m L^2$ (2)
 - (B) 33/8 $\pi^2 h^2 / m L^2$ (1), 35/8 $\pi^2 h^2 / m L^2$ (1)
 - (C) 35/8 $\pi^2 h^2 / m L^2$ (1), 9/2 $\pi^2 h^2 / m L^2$ (2)
 - (D) $35/8 \pi^2 h^2/mL^2$ (1), $9/2 \pi^2 h^2/mL^2$ (1)

- 17. $\psi(x, y) = \exp[|\sin(x y)|] + (x y)^2/2 + 3$ is :
 - (A) symmetric under interchangedof x and y.
 - (B) antisymmetric under interchanged x and y.
 - (C) neither symmetric nor antisymmetric under the interchange of x and y
 - (D) both symmetric and antisymmetric under the interchange of x and y respectively
- 18. A quantum particle is incident on a potential barrier. The particle has incident energy that is less than the height of the potential barrier. When the particle penetrates the barrier, its wave function is :
 - (A) Exponentially increasing
 - (B) Exponentially decreasing
 - (C) Oscillatory
 - (D) A positive constant

- 19. Eigenvalues of the sum of two operators is the sum of the eigenvalues if :
 - (A) The operators are Hermitian
 - (B) The operators have
 diagonalizable commuting
 matrices
 - (C) The operators are unitary
 - (D) The operators are anti-Hermitian
- 20. If H is a Hermitian operator, the following is "always" true :
 - (A) H has real diagonal matrix elements
 - (B) H has positive diagonal matrix elements
 - (C) H has imaginary off-diagonal matrix elements
 - (D) H has a trace equal to zero

21. Using the normalized trial wave function $\psi(x) = \left(\frac{2b}{\pi}\right)^{\frac{1}{4}} e^{-bx^2}$, an upper bound for the ground state energy of a one-dimensional

harmonic oscillator, oscillating with

(A) 3/2 _{ħω}

frequency ω , is :

- (B) $\frac{1}{2}\hbar\omega$
- (C) $\frac{3}{4}\hbar\omega$
- (D) _{ħω}
- 22. The commutator of the orbital angular momentum operators $[L_+, L_-]$, where $L_{\pm} = L_x \pm iL_y$ is :
 - (A) 0

(B) 2 $\hbar L_x$

- (C) 2 $\hbar L_y$
- (D) 2 $\hbar L_z$

- 23. Consider a particle of mass m in a one-dimensional box of length L. A time-independent perturbation $H_1 = \alpha \ \delta(x - L/2)$ is applied to the system. The first order correction to the ground state energy is :
 - (A) $\pi^2 \hbar^2 \alpha / (2 \ m L^2)$
 - (B) 0
 - (C) $2\alpha/L$
 - (D) L/α
- 24. Using WKB approximation, the transmission probability through a parabolic barrier :

$$V(x) = \begin{cases} V_0 \left(1 - \frac{x^2}{a^2} \right) \text{ for } |x| < a \\ 0 \quad \text{ for } |x| < a \end{cases} \text{ is :} \\ (A) \quad \exp\left[\frac{\pi}{2} \sqrt{\frac{2mV_0 a^2}{\hbar^2}} \left(1 - \frac{E}{V_0} \right) \right] \\ (B) \quad \exp\left[-\pi \sqrt{\frac{2mV_0 a^2}{\hbar^2}} \left(1 - \frac{E}{V_0} \right) \right] \\ (C) \quad \exp\left[-\pi \sqrt{\frac{2mV_0 a^2}{\hbar^2}} \left(\frac{E}{V_0} - 1 \right) \right] \\ (D) \quad \exp\left[-\frac{\pi}{2} \sqrt{\frac{2mV_0 a^2}{\hbar^2}} \left(\frac{E}{V_0} - 1 \right) \right] \end{cases}$$

25. Validity of first-Born approximation

for central force potential is :

(A) Independent of incident energy

and scattering potential

(B) For strong scattering potential

weak incident energy

(C) For large incident energy and

weak scattering potential

- (D) For any central force potential
- 26. Spin-orbit coupling leads to :
 - (A) Normal Zeeman effect
 - (B) Anomalous Zeeman effect
 - (C) Stark effect
 - (D) Hyperfine splitting

- 27. Which of the following statements is *not* correct ?
 - (A) In the presence of spin-orbit coupling, the Hamiltonian does not commute with \overline{L} and \overline{S} operators
 - (B) Even in presence of spin-orbit coupling, the Hamiltonian commutes with \overline{L}^2 , \overline{S}^2 and \overline{J} operators
 - (C) The spin-orbit interaction for an electron is described by $H_{so} = (e^2 / 8\pi \in_0) 1 / (m^2 c^2 r^3) \overline{S} . \overline{L}$.
 - (D) In the presence of spin-orbit interaction, the physical quantities measured by \overline{L}^2 , \overline{S}^2 and \overline{J} are not conserved.

28. The differential scattering crosssection $\frac{d\sigma(\theta)}{d\Omega}$, within the first Born approximation, for the central potential V(r) = $\beta/r \ e^{-\mu r}$, where β and μ are positive constants has the dependence on scattering angle θ as (A is constant) : (A) (A² + sin² $\theta/2$) (B) (A² + sin² $\theta/2$)⁻¹ (C) (A² + sin² $\theta/2$)⁻² (D) (A² + sin² $\theta/2$)²

- 29. Consider a random walk on a twodimensional triangular lattice. The probability of taking any of the six possible steps is same. What is the probability that the walker returns to the starting position after taking exactly three steps ?
 - (A) **1/18**
 - (B) 1/216
 - (C) 1/36
 - (D) 1/12
- 30. An ideal monoatomic gas is compressed (no heat is added or removed in the process) so that its volume is halved. The ratio of the new pressure to the original pressure is :
 - $(A) ~\approx 3$
 - (B) ≈ 9
 - $(C) ~\cong 12$
 - (D) ≈ 15
- 31. If a thermodynamic system has N particles at temperature T, then the fluctuation in average energy is proportional to :
 - (A) 1/N

(D) N

- (B) $1/\sqrt{N}$
- (C) $1/(3\sqrt{N})$

9

- 32. If the temperature T of photon gas in equilibrium in a radiation cavity is doubled, the equilibrium number of photons will increase by the factor of :
 - (A) 2
 - (B) 6
 - (C) 8
 - (D) 9
- 33. The volume of a perfect gas is doubled, the number of atoms N and the energy E being held constant, the change in entropy will be :
 - (A) Nk ln V
 - (B) $2Nk \ln V$
 - (C) Nk ln 2
 - (D) $\frac{1}{2}$ Nk ln (2V)
- 34. In adiabatic expansion of a system in which temperature changes from T_1 to T_2 the entropy :
 - (A) will increase
 - (B) will decrease
 - (C) will remain unchanged
 - (D) may increase or decrease depending on the ratio of T_1/T_2

- 35. A Carnot cycle operates as a heat engine between two bodies of equal capacity until their temperatures become equal. If the initial temperatures of the bodies are T_1 and T_2 and $T_1 > T_2$, their common final temperature will be
 - (A) $\sqrt{T_1T_2}$ (B) $2T_1T_2/(T_1 + T_2)$ (C) $(T_1 + T_2)/2$ (D) 0
- 36. The difference between fermions and bosons is that bosons do not obey :
 - (A) Aufbau principle
 - (B) Pauli exclusion principle
 - (C) Hund's rule of maximum multiplicity
 - (D) Heisenberg's uncertainty principle

10

- 37. If the system under consideration is in contact with both a heat reservoir and a particle reservoir, then the ensemble is :
 - (A) Canonical
 - (B) Microcanonical
 - $(C) \ \ Grand canonical$
 - (D) Isobaric-isothermal
- 38. Average energy of a Planck's oscillator of frequency v is :
 - (A) E = $\hbar v$
 - (B) E = $n\hbar v$

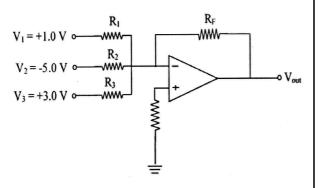
(C) E =
$$\hbar v / (e^{\hbar v / kT} - 1)$$

- (D) $E = mc^2$
- 39. Knowing the fractional population of a two level system in thermal equilibrium at temperature T in a magnetic field \vec{B} , the magnetic moment is proportional to :
 - (A) The difference between the population of the two states.
 - (B) The sum of the population of the two states
 - (C) Product of the population of the two states
 - (D) Ratio of the population of the two states

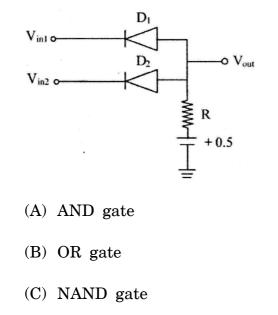
40. The partition function of a two-level system described by the Hamiltonian

$$H = \begin{pmatrix} -\gamma & -\delta \\ -\delta & -\gamma \end{pmatrix} \text{ is } :$$

$$(A) \ 2 \ \cosh\left(\beta\sqrt{\gamma^2 + \delta^2}\right)$$

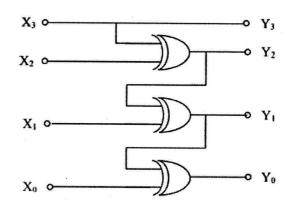

$$(B) \ 2 \ \sinh\left(\beta\sqrt{\gamma^2 + \delta^2}\right)$$

$$(C) \frac{1}{2} \left\{\cosh\left(\beta\sqrt{\gamma^2 + \delta^2}\right) + \sinh\left(\beta\sqrt{\gamma^2 + \delta^2}\right)\right\}$$

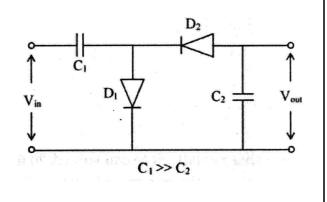

$$(D) \frac{1}{2} \left\{\cosh\left(\beta\sqrt{\gamma^2 + \delta^2}\right) - \sinh\left(\beta\sqrt{\gamma^2 + \delta^2}\right)\right\}$$

- 41. Which of the following transistor amplifier configuration is often used in impedance-matching application ?
 - (A) The common-base amplifier
 - (B) The emitter follower
 - (C) The common-emitter amplifier
 - (D) The common-source amplifier

42. For the following OP-amp circuit, $R_1 = R_2 = R_3 = R_F = 1.0 \text{ k}\Omega$, the output voltage V_{out} is :



- (A) +1.0V
- (B) -1.0V
- (C) +0.5V
- (D) -0.5V
- 43. The following diode circuit acts as a :


(D) NOR gate

44. The binary output $Y_3 Y_2 Y_1 Y_0$ of the following logic circuit for the inputs $X_3 X_2 X_1 X_0 = 1 \ 0 \ 1 \ 1$ is :

- (A) 1 1 0 1(B) 1 0 1 0
- (C) 1 1 1 1
- (D) 0 1 0 1
- 45. A four-bit ripple counter consists of flip-flops that each have a propagation delay from clock to Q output of 12 ns. For the counter of recycle from 1111 to 0000; it will take a total delay of :
 - (A) 12 ns
 - (B) 24 ns
 - (C) 36 ns
 - (D) 48 ns

46. A sinusoidal input voltage $V_{in} = V_0$ sin ωt of frequency ω is given as an input to the following circuit. If V_m is the peak value of the input voltage, the output voltage V_{out} is :

- (A) 2 $V_0 \sin \omega t$
- (B) $\sqrt{2} V_m$
- (C) 2 V_m
- (D) $(V_m/2) \sin \omega t$
- 47. The modulation index of an AM wave is :
 - (A) $m = (V_{max} V_{min})/(V_{max} + V_{min})$
 - (B) $m = (V_{max} + V_{min})/(V_{max} V_{min})$
 - (C) $m = (V_{max} \times V_{min})/(V_{max} + V_{min})$
 - (D) $m = (V_{max} \times V_{min})/(V_{max} V_{min})$

- 48. A digital to analogue converter has
 5.0 V full scale output voltage and an accuracy of ±0.2. The maximum error for any output voltage will be :
 - $(A) \quad 5.0 \quad mV$
 - $(B) \quad 10.0 \quad mV$
 - (C) 20.0 mV
 - (D) 100 mV
- 49. A thermistor is suitable for :
 - (A) High span but low sensitivity(B) High span and high sensitivity(C) Low span but high sensitivity
 - (D) Low span and low sensitivity
- 50. The error of an instrument is
 - normally given as percentage of :
 - (A) Measured value
 - (B) Full scale value
 - (C) Mean value
 - (D) RMS value

- 51. If the wavelength of the first line of the Balmer series in the hydrogen spectrum is λ, then the wavelength of the first line of the Lyman series is :
 - (A) $(27/32)\lambda$
 - (B) $(27/5)\lambda$
 - (C) $(5/27)\lambda$
 - $(D) \hspace{0.1in} (32/27)\lambda$
- 52. The g_N value for F^{19} nucleus is 5.256. The resonance frequency when it is placed in a magnetic field of strength 1.0 T is (Given $\mu_N =$ 5.0504 × 10⁻²⁷ J/T) :
 - (A) 40 MHz
 - $(B) \ 4.0 \ MHz$
 - (C) 60 MHz
 - (D) 0.60 MHz

- 53. Mn³⁺ ion has four 3d electrons. The spectroscopic term factor of this ion is :
 (A) ¹D₂
 - (B) ${}^{4}F_{3/2}$
 - (C) ${}^{3}F_{9/2}$
 - (D) ${}^{5}D_{0}$
- 54. The energy separation between two consecutive Stokes lines in Raman spectrum depends on :
 - (A) Energy separation between vibrational levels in the excited state
 - (B) Wavelength of the incident light
 - (C) Energy separation between vibrational levels in the ground state
 - (D) Intensity of the incident light

- 55. In a He-Ne laser, the laser transition takes place in :
 - (A) Ne only
 - (B) He only
 - (C) Ne first and then in He
 - (D) He first and then in Ne
- 56. If the ESR frequency for a free electron is 9000 MHz, then the magnetic field, at which the ESR spectrometer is working, will be (Given g = 2.0 and μ_B = 9.2732 × 10⁻²⁴ J/T) :
 (A) 600.5 mT
 (B) 321.5 mT
 - (C) 400.0 mT
 - $(D) \ 60.50 \ mT$

- 57. Light of wavelength 1.5 μ m incident on a material with a characteristic Raman frequency of 20 × 10¹² Hz results in a Stokes-shifted line of wavelength :
 - $(A) \ 1.47 \ \mu m$
 - (B) 1.57 μm
 - (C) 1.67 µm
 - $(D) 1.77 \ \mu m$
- 58. Assuming that the L-S coupling scheme is valid, the number of permitted transitions from ${}^{2}P_{3/2} \rightarrow {}^{2}S_{1/2}$ due to a weak magnetic field is :
 - (A) 2
 - (B) 4
 - (C) 6

(D) 10

- 59. A muon from cosmic rays is trapped by a proton to form a hydrogen-like atom. Given that a muon is approximately 200 times heavier than an electron, the longest wavelength of the spectral line (in analogy with the Lyman series) of such an atom will be :
 - (A) 5.62 Å
 - (B) 6.67 Å
 - (C) 3.75 Å
 - (D) 13.3 Å

(D) 3.020

60. An irradiated sample of MgO has a strong ESR line at 0.163 T when the ESR spectrometer is operating at 9.4 GHz. The g value of the ESR line of MgO will be :
(A) 2.0
(B) 2.205
(C) 4.13

- 61. The first Brillouin zone of FCC lattice is :
 - (A) Rhombic dodecahedron
 - (B) Truncated octahedron
 - (C) Cube
 - (D) Parallelepiped
- 62. The specific heat of bulk copper has the behaviour C_V ≅ 4.6 × 10⁻² × T³ Jmol⁻¹K⁻¹ at low temperature. The Debye temperature of copper is found to be :
 (A) 2.48 K
 (B) 348 K
 (C) 448 K
 (D) 548 K

- 63. A linear diatomic chain consists of two atoms having masses 2 kg and
 16 kg respectively. The extremum frequency of optical branch is :
 - (A) $\sqrt{2}$
 - (B) 2
 - (C) $1/\sqrt{2}$
 - (D) 1/2
- 64. The wavelength of the photon which will be required to break a Cooper pair in a superconductor like aluminium whose critical temperature is 1.2 K is :
 (A) 2.5 × 10⁻³m
 (B) 3.4 × 10⁻³m
 (C) 4.4 × 10⁻³m
 - (D) 5.4×10^{-3} m

- 65. In the Kronig-Penney model, if there exists no potential barrier, then :
 - (A) There is periodic dependence of energy on wave vector \vec{k}
 - (B) Energy is not a continuous function of wave vector \vec{k}
 - (C) There are no forbidden energy regions
 - (D) All values of energy are not allowed
- 66. Trivalent iron ion is characterized by the spectroscopic term ⁶S_{7/2}. Its effective magneton number is :
 (A) 2.83
 (B) 5.92
 - (C) 3.87

(D) 2.32

- 67. The ratio of the number of vacancies in equilibrium at 300 K in aluminium to that produced by rapid quenching at 800 K is (given that the enthalpy of formation of vacancy in Al is 68 kJ/mole and $R = 8.314 \text{ kmol}^{-1}/\text{K}$) (A) 3.75×10^{-8}
 - (B) 2.15×10^{-10}
 - (C) 3.18×10^{-10}
 - (D) 3.75×10^{-10}
- 68. The dispersion relation for a low density plasma is $\omega^2 = \omega_0^2 + c^2 k^2$, where ω_0 is the plasma frequency and *c* is the speed of light in free space. The relationship between the group velocity (V_g) and phase velocity (V_p) is :
 - (A) $V_p = V_g$ (B) $V_p = (V_g)^{\frac{1}{2}}$ (C) $V_p V_g = c^2$
 - (D) $V_g = (V_p)^{\frac{1}{2}}$

69. In a BCC lattice with lattice constant 'a', the body-centered position from the origin is at a distance of :

(A)
$$\sqrt{2a}$$

(B) $\sqrt{\left(\frac{3}{2}\right)}a$
(C) $\frac{\sqrt{3}}{2}a$
(D) $\frac{\sqrt{3}}{4}a$

- 70. The chemical potential (μ) of a solid coincides with Fermi energy (E_F) at absolute zero. At temperature T > 0, which of the following options is correct ?
 - (A) $\mu = E_{F}$ (B) $\mu > E_{F}$ (C) $\mu < E_{F}$ (D) $\mu = 0$

- 71. A sample of silicon of thickness 200 μ m is doped with 10^{23} phosphorus atoms per m³. If the sample is kept in a magnetic field of 0.2 Wb/m² and a current is passed through the sample, the Hall voltage produced is :
 - $(A) \ \ 62.5 \ \ \mu V$
 - $(B) \ -6.25 \ \mu V$
 - (C) +6.25 μV
 - $(D) \ -62.5 \ \mu V$
- 72. What is the binding energy of the nucleus for isobar ${}^{64}_{29}$ Cu? [Given : $M_n = 1.008665$ amu, $M_p = 1.007825$ amu, ${}^{64}_{29}$ Cu = 63.9298

amu]

- (A) 450.20 MeV
- (B) 512.03 MeV
- (C) 556.18 MeV
- (D) 612.30 MeV

73. What is the maximum energy of β -particle emitted when ${}_1^3H$ decays to ${}^3_2\mathrm{He}$? [Given : 3_1 H = 3.01605 amu, 3_2 He = 3.01603 amu] (A) 9.8 kev (B) 12.7 kev (C) 15.5 kev(D) 18.7 kev The quark content of the subatomic 74. particle K° with strangeness S = +1and isospin I =1/2 is given by :

19

(A) $d\overline{s}$

(B) $\overline{d}s$

(C) $d\bar{d}$

(D) $u\overline{u}$

77. The reaction $\Pi^+ + n \rightarrow \Pi^0 + \mathrm{K}^+$ The number of fissions per second 75.in a 100 Mwatt nuclear reactor cannot be induced due to nonis : conservation of : (A) 3×10^{6} (A) Isospin (B) 3×10^{12} (B) Baryon number (C) 3×10^{18} (C) Third component (D) 3×10^{24} (D) Strangeness 76. What is the energy of gamma rays 78. What spin-parity and isospin would emitted in the beta decay of ${}^{28}_{13}$ Al? the shell model predict for the [Given : $E_{max} = 2.86$ MeV, ${}^{28}_{13}Al =$ ground states of ${}^{13}_6\mathrm{C}$ [Recall that the 27.981908 amu and ${}^{28}_{14}\mathrm{Si}$ = $P_{3/2}$ shell lies below $P_{1/2}$] 27.976929 amu] (A) $J^P = (3/2)^-, I = 3/2$ (A) 1.25 MeV (B) $J^P = (1/2)^-, I = 1/2$ (B) 1.78 MeV (C) $J^P = (1/2)^-, I = 1/2$ (C) 1.86 MeV (D) $J^P = (3/2)^-, I = 1/2$ (D) 2.30 MeV

79. The following nuclear reaction cannot be induced because

 $n \rightarrow p + e^- + \overline{v}_e$

- (A) Q and B are conserved but ${\rm I}_3$ and L are not conserved
- (B) Q, B and L are conserved but I_3 is not conserved
- (C) Q, B and I_3 are conserved but L is not conserved
- (D) B, I₃ and L are conserved but Q is not conserved
- 80. What are the appropriate values for the corresponding lifetimes of hadronic decay, electromagnetic decay and weak decay ?
 (A) 10⁻⁹ sec, 10⁻⁶ sec, 10⁻³ sec
 (B) 10⁻¹² sec, 10⁻⁹ sec, 10⁻⁶ sec
 (C) 10⁻¹⁵ sec, 10⁻¹³ sec, 10⁻⁶ sec
 (D) 10⁻²³ sec, 10⁻¹⁸ sec, 10⁻¹⁰ sec

81. For the differential equation

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - n^{2})y = 0$$

- Which of the following statements is true ?
- (A) x = 0 and the point at infinity

are regular singular points

(B) x = 0 is an ordinary point, while

the point at infinity is a regular

singular point.

(C) x = 0 is a regular singular point,

while the point at infinity is an

irregular singular point

(D) x = 0 is an ordinary point, while

the point at infinity is singular.

G(k) be the Fourier

of f(x) and g(x)

82. The matrix
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 1 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{pmatrix}$$
has
rank :
(A) 1
(B) 2
(C) 3
(D) 4
(C) 3
(C) 3
(C) 4
(C) 3
(C) 3
(C) 4
(C) 4
(C) 5
(C) 5
(C) 5
(C) 7

- 86. The value of $\int z \, dz$ over the contour C, where C is any open contour starting at $z_1 = (-1, 0)$ and ending at $z_2 = (0, 1)$ is equal to :
 - (A) 0
 - (B) π
 - (C) 2
 - (D) 1
- 87. The value of the integral $\int \frac{\sin z}{z} dz$ over the contour C, C given by |z| = 1 and traversed counterclockwise, is :
 - (A) $2\pi i$
 - (B) $\frac{2\pi i}{\sqrt{3}}$
 - (C) 0
 - (D) $\frac{\pi}{\sqrt{3}}$
- 88. Mean is the same as variance for a :
 (A) Poisson distribution
 (B) Normal distribution
 (C) Uniform distribution
 (D) Binomial distribution

89. The Green's function for the following boundary value problem $\frac{d^2y}{d^2} = f(x) \quad \text{with} \quad \text{boundary}$

$$dx^{2}$$

conditions : $y(0) = 0, y(1) = 1$, is :

(A) G
$$(x, x_0) = \begin{cases} x_0(x-1) & \text{for } 0 \le x_0 \le x \\ x(x_0-1) & \text{for } x \le x_0 \le 1 \end{cases}$$

(B)G $(x, x_0) = \begin{cases} x_0/(x-1) & \text{for } 0 \le x_0 \le x \\ x/(x_0-1) & \text{for } x \le x_0 \le 1 \end{cases}$
(C)G $(x, x_0) = \begin{cases} (x_0-1)/x & \text{for } 0 \le x_0 \le x \\ (x-1)/x_0 & \text{for } x \le x_0 \le 1 \end{cases}$

(D) G
$$(x, x_0) = \begin{cases} x_0(x+1) & \text{for } 0 \le x_0 \le x \\ x(x_0+1) & \text{for } x \le x_0 \le 1 \end{cases}$$

90. To find the roots of equation $x^2 - 20 = 0$ using the Newton-Raphson method, the iterative formula for the successive trial root is :

(A)
$$x_{k+1} = \frac{x_k}{2} - \frac{10}{x_k}$$

(B) $x_{k+1} = -\frac{x_k}{2} + \frac{10}{x_k}$
(C) $x_{k+1} = x_k - \frac{x_k}{20}$
(D) $x_{k+1} = x_k - \frac{20}{x_k}$

23

- 91. The order of magnitude of the error in estimating the value of the $\int_0^1 (x^3 + 2x^2 + 4x + 9) dx$ integral numerically, using Simpson's 1/3rd method with a step size of 0.1 is : (A) 10^{-4} (B) 10^{-5} (C) 0
 - (D) 10⁻³
- 92. A reservoir discharges water through holes with shutters at depth *h* and surface area A(h). The values are given in the following table. If t denotes the time in minutes and the rate of fall of the water level is given by the equation $\frac{dh}{dt} = -\frac{48h}{A}$, what is the time taken in minutes for the water level to fall from 14 ft. to 10 ft. above the holes ?

	h (in ft.)	A (in sq. ft.)		
	10	940		
	11	1078		
	12	1200		
	13	1352		
	14	1540		
	8.41 2.63			
	5.48			
(D)	6.06			

93. Given that α and β are complex numbers, which of the following sets of matrices forms a group under matrix multiplication ?

(A)
$$\begin{pmatrix} \alpha & \beta \\ 0 & 0 \end{pmatrix}$$

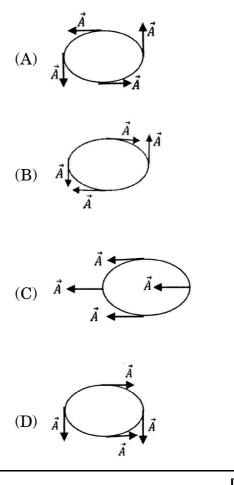
(B)
$$\begin{pmatrix} 1 & \alpha \\ \beta & 1 \end{pmatrix}$$
 where $\alpha\beta \neq 1$

(C)
$$\begin{pmatrix} \alpha & \alpha^* \\ \beta & \beta^* \end{pmatrix}$$
 where $\alpha\beta^*$ is real

(D)
$$\begin{pmatrix} \alpha & \beta \\ -\beta^* & \alpha^* \end{pmatrix}$$
 where $|\alpha|^2$ +

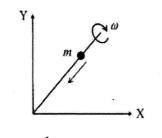
 $|\beta|^2 = 1$

94. A uniform stick of mass m and length l is pivoted about a horizontal axis through its lower end at O (as shown in the figure). Initially, it is held vertically and is allowed to fall freely downwards (under the action of gravity, with no air resistance). Its angular velocity at the instant when it makes an angle of 60° with the vertical is (given that the moment of inertial I = ml²/3 and g is acceleration due to gravity) :


- (A) $\sqrt{3g/2l}$
- (B) $\sqrt{2g/3l}$
- (C) $\sqrt{2g/l}$
- (D) $\sqrt{g/2l}$

95. The velocities of a satellite (orbiting around earth) at perigee and apogee points are 25 km/s and 10 km/s respectively. If the perigee distance from the centre of the earth is 10000 km, what is the apogee distance ?
(A) 25000 km
(B) 20000 km
(C) 2500 km
(D) 2000 km

96. Laplace-Runge Lenz vector \overrightarrow{A} is defined as :


$$\vec{\mathbf{A}} = \vec{p} \, x \, \vec{l} - \frac{\mu \, k \, \vec{r}}{r}$$

where \vec{l} is angular momentum vector, \vec{p} is linear momentum vector, μ is the reduced mass, and \vec{r} is the radius vector. If \vec{A} is conserved for motion in -k/rpotential, then the direction of \vec{A} in an elliptical orbit is :

- 97. The plane of oscillation of a Foucault pendulum rotates :
 - (A) 15° per hour at the equator
 - (B) 15° per hour at the pole
 - (C) 7.5° per hour at latitude 60°
 - (D) 30° per hour at latitude 60°
- 98. A bead of mass m slides on a smooth massless rod. The rod is rotating about one end in X-Y plane with uniform angular velocity ω (as shown in the figure). The Lagrangian of the system is given as :

- (A) $L = \frac{1}{2} mr^2 \dot{\theta}^2 mgr \sin \theta$ (B) $L = \frac{1}{2} mr^2 \dot{\theta}^2 - mgr \cos \theta$
- (C) $L = \frac{1}{2} m(\dot{r}^2 + r^2\dot{\theta}^2) mgr\sin\theta$
- (D) $L = \frac{1}{2} m(\dot{r}^2 + r^2 \dot{\theta}^2) + mgr \cos \theta$

- 99. In the case of two coupled identical pendulums, in general :
 - (A) The potential energy is a homogeneous quadratic function, when expressed in terms of actual displacements
 - (B) The potential energy is a homogeneous quadratic function, when expressed in terms of normal coordinates
 - (C) The potential energy is not a homogeneous quadratic function, when expressed in terms of actual coordinates
 - (D) The potential energy is a homogeneous quadratic function, when expressed in terms of actual coordinates and not a homogeneous quadratic function, when expressed in terms of normal coordinates
- 100. Two frames S and S' are in relative motion. The frame S' is moving with speed c/2, where c is the speed of light. In the frame S two events occur at (x_1, t_1) and (x_2, t_2) . In the frame S', these events occur simultaneously. Then the value of $(x_2 - x_1)/(t_2 - t_1)$ is : (A) c/2(B) 2c(C) c/4

(D) 4c

ROUGH WORK

ROUGH WORK