Test Booklet Code \& Serial No. प्रश्नपत्रिका कोड व क्रमांक Paper-II ELECTRONIC SCIENCE

Signature and Name of Invigilator
Seat No.

1. (Signature) \qquad (In figures as in Admit Card)
(Name) \qquad Seat No. \qquad (In words)
2. (Signature) \qquad
(Name) \qquad OMR Sheet No. \square

Time Allowed : 2 Hours]

[Maximum Marks : 200

Number of Pages in this Booklet : 32

Instructions for the Candidates

1. Write your Seat No. and OMR Sheet No. in the space provided on the top of this page.
This paper consists of $\mathbf{1 0 0}$ objective type questions. Each question will carry two marks. All questions of Paper II will be compulsory. At the commencement of examination, the question booklet will be given to the student. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as follows :
(i) To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal or open booklet.
(ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to missing pages/questions or questions repeated or not in serial order or any other discrepancy should not be accepted and correct booklet should be obtained from the invigilator within
the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given. The same may please be noted.
(iii) After this verification is over, the OMR Sheet Number should be entered on this Test Booklet.
Each question has four alternative responses marked (A), (B), (C) and (D). You have to darken the circle as indicated below on the correct response against each item.
Example : where (C) is the correct response.

Your responses to the items are to be indicated in the OMR
Sheet given inside the Booklet only. If you mark at any place other than in the circle in the OMR Sheet, it will not be evaluated. Read instructions given inside carefully.
Rough Work is to be done at the end of this booklet.
If you write your Name, Seat Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, you will render yourself liable to disqualification.
9. You have to return original OMR Sheet to the invigilator at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are, however, allowed to carry the Test Booklet and duplicate copy of OMR Sheet on conclusion of examination.
10. Use only Blue/Black Ball point pen.
11. Use of any calculator or \log table, etc., is prohibited.
12. There is no negative marking for incorrect answers.

Number of Questions in this Booklet : $\mathbf{1 0 0}$

विद्यार्थ्यांसाठी महत्त्वाच्या सचना

 परिक्षार्थींनी आपला आसन क्रमांक या पृष्ठावरील वरच्या कोपन्यात लिहावा. तसेच आपणांस दिलेल्या उत्तरपत्रिकेचा क्रमांक त्याखाली लिहावा.2. सदर प्रश्नपत्रिकेत 100 बहुपर्यायी प्रश्न आहेत. प्रत्येक प्रश्नास दोन गुण आहेत. या प्रश्नपत्रिकेतील सर्व प्रश्न सोडविणे अनिवार्य आहे.
3. परीक्षा सुरू झाल्यावर विद्यार्थ्याला प्रश्नपत्रिका दिली जाईल. सुरुवातीच्या 5 मिनीटांमध्ये आपण सदर प्रश्नपत्रिका उघडून खालील बाबी अवश्य तपासून पहाव्यात.
(i) प्रश्नपत्रिका उघडण्यासाठी प्रश्नपत्रिकेवर लावलेले सील उघडावे. सील नसलेली किंवा सील उघडलेली प्रश्नपत्रिका स्विकारू नये.
(ii) पहिल्या पृष्ठावर नमूद केल्याप्रमाणे प्रश्नपत्रिकेची एकूण पृष्ठे तसेच प्रश्नपत्रिकेतील एकूण प्रश्नांची संख्या पडताळ्बून पहावी. पृष्ठे कमी असलेली/कमी प्रश्न असलेली/प्रश्नांचा चुकीचा क्रम असलेली किंवा इतर त्रुटी असलेली सदोष प्रश्नपत्रिका सुरुवातीच्या 5 मिनिटातच पर्यवेक्षकाला परत देऊन दुसरी प्रश्नपत्रिका मागवून घ्यावी. त्यानंतर प्रश्नपत्रिका बदलून मिळणार नाही तसेच वेळही वाढवून मिळणार नाही याची कृपया विद्यार्थ्यांनी नोंद घ्यावी.
(iii) वरीलप्रमाणे सर्व पडताळ्ठन पाहिल्यानंतरच प्रश्नपत्रिकेवर ओ. एम.आर. उत्तरपत्रिकेचा नंबर लिहावा.
4. प्रत्येक प्रश्नासाठी (A), (B), (C) आणि (D) अशी चार विकल्प उत्तरे दिली आहेत. त्यातील योग्य उत्तराचा रकाना खाली दर्शविल्याप्रमाणे ठळकपणे काळा/निळ्ठा करावा.
उदा. : जर (C) हे योग्य उत्तर असेल तर.

5. या प्रश्नपत्रिकेतील प्रश्नांची उत्तरे ओ.एम.आर. उत्तरपत्रिकेतच दर्शवावीत. इतर ठिकाणी लिहिलेली उत्तरे तपासली जाणार नाहीत.
6. आत दिलेल्या सूचना काळजीपूर्वक वाचाव्यात.
7. प्रश्नपत्रिकेच्या शेवटी जोडलेल्या कोन्या पानावरच कच्चे काम करावे.
8. जर आपण ओ.एम.आर. वर नमूद केलेल्या ठिकाणा व्यतिरीक्त इतर कोठेही नाव, आसन क्रमांक, फोन नंबर किंवा ओळख पटेल अशी कोणतीही खुण केलेली आढठ्रून आल्यास अथवा असभ्य भाषेचा वापर किंवा इतर गैरमार्गांचा अवलंब केल्यास विद्यार्थ्याला परीक्षेस अपात्र ठरविण्यात येईल.
9. परीक्षा संपल्यानंतर विद्याथ्थ्याने मूळ ओ.एम.आर. उत्तरपत्रिका पर्यवेक्षकांकडे परत करणे आवश्यक आहे. तथापि, प्रश्नपत्रिका व ओ.एम.आर. उत्तरपत्रिकेची द्वितीय प्रत आपल्याबरोबर नेण्यास विद्यार्थ्यांना परवानगी आहे.
फक्त निळ्या किंवा काळ्या बॉल पेनचाच वापर करावा.
10. कलक्युलेटर किंवा लॉग टेबल वापरण्यास परवानगी नाही.
11. चुकीच्या उत्तरासाठी गुण कपात केली जाणार नाही.

JUN - 38220/II—C

Electronic Science
 Paper II

Time Allowed : 120 Minutes]
[Maximum Marks : 200
Note : This Paper contains Hundred (100) multiple choice questions. Each question carrying Two (2) marks. Attempt All questions.

1. The maximum and the minimum size of a segment in 8086 is :
(A) $64 \mathrm{~K}, 16$ bytes
(B) $32 \mathrm{~K}, 256$ bytes
(C) $16 \mathrm{~K}, 16$ bytes
(D) $64 \mathrm{~K}, 256$ bytes
2. 8051 has 8 bit data bus, but it can generate 16 bit addresses using :
(A) $10 / \overline{\mathrm{M}}$
(B) ALE
(C) $\mathrm{R} / \overline{\mathrm{W}}$
(D) $\overline{\mathrm{EA}}$
3. Which of the following represents indexed addressing ?
(A) MOVC A, @ + DPTR
(B) AJMP addr.
(C) SET B 07 H
(D) MOV A, 47 H
4. The alternate function of 8051 port 2 is :
(A) Input/output data $\left(\mathrm{D}_{0}-\mathrm{D}_{7}\right)$
(B) Sending higher order address $\left(\mathrm{A}_{8}-\mathrm{A}_{15}\right)$
(C) Sending lower order address $\left(\mathrm{A}_{0}-\mathrm{A}_{7}\right)$
(D) Serial input/output
5. Bus arbitration, Bus Request and Bus Grant are terms used in :
(A) Serial communication
(B) Memory map design
(C) Direct memory access
(D) Address/Data Multiplexing

JUN - 38220/II—C

6. The timer 0 of 8051 with 1 MHz clock can generate maximum delay of with resolution \qquad
(A) $64 \mathrm{~ms}, 1 \mu \mathrm{~s}$
(B) $64 \mu \mathrm{~s}, 1 \mathrm{~ms}$
(C) $32 \mu \mathrm{~s}, 100 \mathrm{~ms}$
(D) $256 \mathrm{~ms}, 1 \mu \mathrm{~s}$
7. When two BCD numbers are added, the answer is a non-BCD number. To convert it in BCD form the instruction used is :
(A) SUBB A, \# data
(B) $\mathrm{XCH} \mathrm{A}, \mathrm{Rn}$
(C) ADD A, Rn
(D) DA A
8. Arrange the sequence of 8086 interrupts as per the priority assigned, from lowest to highest :
(1) Single step
(2) INTR
(3) NMI
(4) Divide error, Int n , INTO
(A) (2) (3) (4) (1)
(B) (1) (2) (3) (4)
(C) (3) (2) (1) (4)
(D) (1) (3) (2) (4)
9. Match List I with List II :

List I

(Instruction)
(a) DJNZ, R3, 100p
(b) ADD R 4
(c) LCALL 2020
(d) SWAP

List II

(Addressing Mode)
(1) Implied
(2) Direct
(3) Register
(4) Relative

Codes :

(a) (b) (c) $\quad(d)$
(A) (4) (2) (3) (1)
(B) (4) (3) (2) (1)
(C) (4) (1) (2) (3)
(D) (3) (4) (1) (2)
10. Assertion (A) :

High data rate can be handled by reducing the interrupt overheads.
Reason (R) :
DMA is fast data transfer process.
(A) Both (A) and (R) are true and (R) is correct explanation of (A)
(B) Both (A) and (R) are true but (R) is not correct explanation of (A)
(C) (A) is true but (R) is false
(D) (A) is false but (R) is true

JUN - 38220/II—C

11. \qquad cannot be fabricated on an IC.
(A) Transistors
(B) Diodes
(C) Resistors
(D) Large inductors and transformers

Gate oxide layer consists of :
(A) SiO_{2} layer, overlaid with a few layers of an oxynitrided oxide
(B) Only SiO_{2} layer
(C) SiO_{2} layer with polysilicon layer
(D) SiO_{2} layer and stack of epitaxial layer of polysilicon
13. X-ray diffraction patterns are used for studying crystal structure of solids because :
(A) X-rays have high energy and hence they can penetrate through solids
(B) X-rays are electromagnetic radiation, therefore they do not interact with matter
(C) X-ray wavelengths are comparable to inter-atomic distance
(D) High frequency of X-rays allows quick analysis
14. In the CMOS stick diagrams the n and p transistors are separated by :
(A) Thick black line
(B) Dotted blue line
(C) Thick yellow line
(D) Dotted brown line
15. For CMOS circuits which of the following is true ?
(A) There is low power consumption during high speed switching
(B) There is high power consumption in static condition
(C) There is negligible power consumption during dynamic condition
(D) The dynamic power consumption increases with increasing frequency of operation
16. Which equation is correct for a digital gate with symbols carrying usual meaning ?
(A) $\mathrm{V}_{\mathrm{NL}}=\mathrm{V}_{1 \mathrm{~L}(\text { Max })}+\mathrm{V}_{0 \mathrm{~L}(\text { Max })}$
(B) $\mathrm{V}_{\mathrm{NH}}=\mathrm{V}_{0 \mathrm{H}(\mathrm{Min})}+\mathrm{V}_{1 \mathrm{H}(\text { Min })}$
(C) $\mathrm{V}_{\mathrm{NL}}=\mathrm{V}_{0 \mathrm{H}(\text { Min })}-\mathrm{V}_{1 \mathrm{H}(\text { Min })}$
(D) $\mathrm{V}_{\mathrm{NH}}=\mathrm{V}_{0 \mathrm{H}(\mathrm{Min})}-\mathrm{V}_{1 \mathrm{H}(\text { Min })}$
17. Assertion (A) :

Shallow Trench Isolation (STI) prevents electrical current leakage between adjacent semiconductor devices.

Reason (R) :
STI process involves etching a pattern of trenches in silicon and filling them with insulating SiO_{2}.
(A) Both (A) and (R) are true and (R) is the correct explanation of (A)
(B) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(C) (A) is true but (R) is false
(D) (A) and (R) both are false

JUN - 38220/II—C

18. Match List I with List II :

List I

(a) ion implantation
(b) etching
(c) oxidation
(d) metallization

List II

(1) interconnect between devices
(2) insulating dielectric layer
(3) removal of unwanted material
(4) low temperature impurity insertion

Codes :

(a) (b) (c) (d)
(A) (1) (2) (3) (4)
(B) (4) (3) (2) (1)
(C) (4) (2) (1) (3)
(D) (2) (3) (4) (1)
19. 'Register Transfer Level' means :
(A) A structure that deals with only behavioural constructs
(B) A structure that combines both behavioural and data flow constructs and can be acceptable by logic synthesis tools
(C) A structure that deals with only data flow constructs
(D) A structure that defines transfer of register from one region to the other
20. IIR filters are :
(A) Recursive where present output depends on present and past inputs and output samples only
(B) Non-recursive where present output depends on present and past input samples only
(C) Recursive where present output depends on present and past input samples only
(D) Non-recursive where present output depends on present and past inputs and output samples only
21. ECG is recorded with the help of :
(A) Non-contact probes
(B) Surface metal electrodes
(C) Penetrating metal electrodes
(D) Optical electrodes
22. The stub length on single stub matching cancels :
(A) Susceptance
(B) Permeability
(C) Conductance
(D) Inductance
23. The principle mode of propagation in co-axial line is \qquad mode.
(A) TE
(B) TM
(C) TEM
(D) TE_{11}
24. The distance around one cycle of Smith chart is :
(A) λ
(B) $\lambda / 4$
(C) $\lambda / 2$
(D) $\lambda / 8$
25. The value of directivity of isotropic antenna is :
(A) 1
(B) 0
(C) ∞
(D) 0.5
26. A transmission line has a VSWR of 2 , the reflection coefficient is equal to :
(A) $1 / 3$
(B) 0
(C) $1 / 4$
(D) $1 / 2$
27. In a microwave system, wave guides has the advantage of :
(A) Positive phase shift
(B) High power handing capability and low loss
(C) Thin dielectric substrate
(D) Coupling with co-axial wave guides
28. Arrange the following S-parameters of E-plane in increasing order of value :
(a) S 12
(b) S 13
(c) S 23
(d) S 33
(A) $(d),(c),(a),(b)$
(B) $(d),(a),(b),(c)$
(C) $(a),(d),(c),(b)$
(D) $(c),(d),(a),(b)$
29. Match the following List I and List II :

List I

(a) Directivity (D)
(b) Antenna Efficiency (n)
(c) Fraunhofer Region (R)
(d) The effective area of an antenna (Ae)

List II

(1) $\frac{\lambda^{2} G}{4 \pi}$
(3) $\frac{\text { Radiated Power }}{\text { Total Input Power }}$

Codes :
(a) (b) (c) (d)
(A) (2) (3) (4) (1)
(B) (1) (2) (4) (3)
(C) (4) (3) (2) (1)
(D) (2) (3) (1) (4)
30. Delay line cancellor in RADAR :
(A) Improves SNR
(B) Rejects stationary clutter at zero frequency
(C) Corresponds to amplifier echo
(D) Is frequency domain filter

JUN - 38220/II—C

31. Protocol used to link devices in IOT is :
(A) $\mathrm{TCP} / \mathrm{IP}$
(B) $\mathrm{I}^{2} \mathrm{C}$
(C) SPI
(D) UDP
32. Cyclic redundancy check and hamming code works on data of \qquad and
\qquad respectively.
(A) 8-bit size, any size
(B) fixed size, any size
(C) any size, fixed size
(D) 2-bit size, any size
33. In source coding theorem if, discrete memoryless source of entropy $\mathrm{H}(\mathrm{S})$ and average code-word length $\overline{\mathrm{L}}$, the source coding theorem has \qquad following relation.
(A) $\overline{\mathrm{L}} \leq \mathrm{H}(\mathrm{S})$
(B) $\overline{\mathrm{L}} \geq \mathrm{H}(\mathrm{S})$
(C) $\overline{\mathrm{L}} \geq \log \mathrm{H}(\mathrm{S})$
(D) $\overline{\mathrm{L}} \leq \log \mathrm{H}(\mathrm{S})$
34. Cloud computing corresponds to :
(A) Analysis of metrological data
(B) Agglomeration of computing and storage resources
(C) Localised high performance computing
(D) Mobile data management
35. In the vestigial sideband amplitude modulation (AM-VSB), the transmitted signal has a bandwidth of \qquad where B is bandwidth of original analog signal.
(A) $\mathrm{B}-\Delta$
(B) $\mathrm{B}+\Delta$
(C) $\mathrm{B} \pm \Delta$
(D) $\mathrm{B} \pm 2 \Delta$
36. Differential pulse coded modulation exploits the \qquad between samples to
\qquad encoding rate.
(A) autocorrelation, decrease
(B) correlation, increase
(C) autocorrelation, increase
(D) correlation, decrease
37. The size of $\operatorname{IPv} 6$ address is :
(A) 32 bit
(B) 64 bit
(C) 128 bit
(D) 256 bit
38. Match List I with List II and select the correct answer using codes given below :

List I

(a) Error signal
(b) Control signal
(c) Output signal
(d) Input signal

Codes :
(a) (b) (c) (d)
(A) (2) (4) (3) (1)
(B) (4) (3)
(C) (2) (3) (4) (1)
(D) (4) (1) (3)
(2)

JUN - 38220/II—C

39. The main difference between Amplitude modulation and Frequency modulation is that:
(a) Carrier frequency is higher than base band frequency
(b) Frequency modulation has limited bandwidth
(c) Frequency modulation has unlimited bandwidth
(d) Intermediate frequency stage is found in frequency demodulator circuit
(A) (a) and (c)
(B) (c) and (d)
(C) (b) and (d)
(D) (c) only
40. A spectrum analyser is an instrument used for :
(A) Visualising time variation of a waveform
(B) Identifying dominant frequencies and harmonics
(C) Introducing noise floor
(D) Determination of impedance of an element
41. When checking a good SCR with an ohmmeter it will :
(A) Show low resistance with positive on anode and negative on cathode and high resistance when reversed
(B) Show low resistance in both directions
(C) Show high resistance in both directions
(D) Show high resistance with positive on anode and negative on cathode, and low resistance when reversed
42. UJT is often used in power controlling circuits because of :
(A) Excellent triggering properties
(B) High power dissipation
(C) Large breakdown voltage
(D) Capable of supplying high current for triggering

JUN - 38220/II—C

43. Weight of SMPS based 12 volts adopters much lower as compared to conventional adopter because SMPS uses :
(A) Ferrite transformers
(B) Power MOSFETS
(C) Rectifiers in the first stage
(D) High frequency step-down
44. The advantage of on-line UPS over off-line UPS is that :
(A) Give true sine wave
(B) There is no phase change of output during mains failure
(C) They can provide high power and long duration
(D) Efficiency of conversion is very high
45. Match the following for on-state resistance for the device in milliohms :

Set I

(a) Diode
(b) BJT
(c) SCR
(d) Triac
(2) 0.16

Set II

(1) 0.25
(3) 3.5
(4) 4.0

Codes :

(a) (b)
(c) (d)
(A) (2) (4) (1) (3)
(B) (3) (4)
(1) (2)
(C) (4) (2) (3)
(1)
(D) (1) (2) (4) (3)

Directions 46 to 49 :

The shifting of the operating wavelength to the $1.3 \mu \mathrm{~m}$ range has another important advantage. The corresponding loss is much smaller. Fig. above shows the loss spectrum for a typical optical fibre and as can be seen the losses at $\lambda_{0} \sim 1.3 \mu \mathrm{~m}$ are $\sim 1 \mathrm{~dB} / \mathrm{km}$ which is smaller by a factor of about 3 when compared with losses at $\lambda_{0} \sim 0.8 \mu \mathrm{~m}$. Optical communication systems around 1981 used graded index multimode fibres with $1.3 \mu \mathrm{~m}$ sources; typical sources used were InGaAsP/InP LEDs ($\Delta \lambda_{0} \approx 25 \mathrm{~nm}$) and laser diodes ($\Delta \lambda_{0} \approx 2 \mathrm{~nm}$) with Ge APDs as detectors. The losses in the fibres were $\sim 1 \mathrm{~dB} / \mathrm{km}$. These systems are usually said to belong to second generation optical communication systems. In a typical operating system the repeater spacing was 30 km and the bit rate was $\sim 45 \mathrm{Mbit} / \mathrm{s}$. Thus, in comparison to first generation systems, the repeater spacing was increased by a factor of about 2.5 which was primarily due to the decrease in pulse dispersion as well as in the losses in optical fibres.

As shown above by operating at $1.3 \mu \mathrm{~m}$ wavelength, material dispersion has become extremely small and therefore the information-carrying capacity is limited by intermodal dispersion. This intermodal dispersion can be totally eliminated by using single mode fibres where only one guided mode is possible.

This will be discussed in the following section.
46. Emission wavelength of $\operatorname{InGaAsP} / \operatorname{InP}$ device is :
(A) 25 nm
(B) 2 nm
(C) $1.3 \mu \mathrm{~m}$
(D) $0.8 \mu \mathrm{~m}$
47. Importance of $1.3 \mu \mathrm{~m}$ range in optical communication arises to the fact that the :
(A) attenuation is lowest
(B) bandwidth is highest
(C) components are easily available
(D) impurities have no effect in transmission
48. The primary reason for shifting characteristic of optical fiber at 1550 nm to 1300 nm is :
(A) to increase mechanical strength of fiber for 1300 nm operation
(B) to obtain low attenuation at 1300 nm
(C) to make use high quality laser diodes
(D) to reduce the disportion problems at 1300 nm
49. Intramodal dispersion is not a limiting factor in the following spectral region for a silica fiber :
(A) $0.85 \mu \mathrm{~m}$
(B) $0.13 \mu \mathrm{~m}$
(C) $0.14 \mu \mathrm{~m}$
(D) $0.15 \mu \mathrm{~m}$
50. The size of functional elements in MEMS is of the order of :
(A) $1 \times 10^{6} \mathrm{~m}$
(B) $1 \times 10^{-3} \mathrm{~m}$
(C) $1 \times 10^{-6} \mathrm{~m}$
(D) $1 \times 10^{-9} \mathrm{~m}$

JUN - 38220/II—C

51. Force exerted by magnetic field in Hall effect transducer is :
(A) Lorentz force
(B) Hall effect
(C) Magnetic force
(D) Electric force
52. The bridge balance equation can be written in :
(A) Impedance form
(B) Resistance form
(C) Conductance form
(D) Admittance form
53. Following is the most accurate temperature transducer :
(A) Thermistor
(B) Thermocouple
(C) Radiation thermometer
(D) Bimetal strips
54. Lissajous figure corresponding to phase difference of $3 \pi / 4$ is :
(A)

(B)

(C)

(D)

55. The best suited flow-meter to handle corrosive liquids is :
(A) Displacement flow-meter
(B) Piston type flow-meter
(C) Turbine flow-meter
(D) Magnetic flow-meter
56. Characteristic equation in a control system is a relation formed by :
(A) Equating to zero the denominator of transfer function
(B) Equating to zero the numerator of transfer function
(C) Equating numerator to denominator of transfer function
(D) Equation both numerator and denominator to zero of the transfer function
57. The frequency that would occur for two complex poles if the damping were equal to zero is called :
(A) Forced damping frequency
(B) Critical damping frequency
(C) Natural frequency
(D) Conditional frequency
58. For the following ladder network :

its block diagram is :
(A)

(B)

(C)

(D)

JUN - 38220/II—C

59. The transfer function of the following differentiating circuit is :

(A) $-\left[\frac{\mathrm{R}_{2}\left(\mathrm{R}_{1} \mathrm{C}_{\mathrm{s}}+1\right)}{\mathrm{R}_{1}}\right]$
(B) $-\left[\frac{\mathrm{R}_{1}\left(\mathrm{R}_{2} \mathrm{C}_{\mathrm{s}}+1\right)}{\mathrm{R}_{2}}\right]$
(C) $\left[\frac{\mathrm{R}_{1} \mathrm{R}_{2}\left(\mathrm{C}_{\mathrm{s}}+1\right)}{\mathrm{R}_{1}}\right]$
(D) $\left[\frac{\mathrm{R}_{2}\left(\mathrm{R}_{1} \mathrm{C}_{\mathrm{s}}-1\right)}{\mathrm{R}_{1}}\right]$
60. Assertion (A) :

Many of the linear control system transfer functions do not have poles or zeroes in the right half s-plane.

Reason (R) :

These are called minimum phase transfer functions.
(A) Both (A) and (R) are true and (R) is correct explanation of (A)
(B) Both (A) and (R) are true and (R) is not correct explanation of (A)
(C) (A) is true, (R) is false
(D) (A) is false, (R) is true
61. Which of the following is not a semiconductor ?
(A) Galium Arsenide
(B) Indium
(C) Germanium
(D) Silicon
62. In the case of N-type semiconductor the energy required to detach fifth electron from the donor atom is :
(A) 0.01 eV
(B) 0.05 eV
(C) 0.25 eV
(D) 0.70 eV
63. P-side of a semiconductor diode is applied a potential of 0.5 V whereas the N -side is applied a potential of -1.0 V . The diode shall :
(A) Conduct partially
(B) Not conduct
(C) Conduct
(D) Breakdown
64. A semiconductor is irradiated with light such that carriers are uniformly generated throughout its volume. The semiconductor is N-type with $\mathrm{N}_{\mathrm{D}}=10^{19} / \mathrm{cm}^{3}$. If the excess electron concentration in the steady state is $\Delta_{n}=10^{15} / \mathrm{cm}^{2}$ and if $\tau_{p}=10 \mu \mathrm{~s} \mathrm{C}$ minority carrier life time, then what is the generation rate due to irradiation?
(A) $10^{20} \mathrm{e}-\mathrm{h}$ pairs $/ \mathrm{cm}^{3} / \mathrm{s}$
(B) $10^{14} \mathrm{e}-\mathrm{h}$ pairs $/ \mathrm{cm}^{3} / \mathrm{s}$
(C) $10^{10} \mathrm{e}-\mathrm{h}$ pairs $/ \mathrm{cm}^{3} / \mathrm{s}$
(D) $10^{8} \mathrm{e}-\mathrm{h} \mathrm{pairs} / \mathrm{cm}^{2} / \mathrm{s}$
65. Compared to BJT, a JFET has :
(A) Lower input impedance
(B) Higher voltage gain
(C) Higher input impedance and high voltage gain
(D) Higher input impedance and low voltage gain

JUN - 38220/II—C

66. In a MOSFET devices, the N-channel type is better than the P-channel type in the following respect :
(A) It has better noise immunity
(B) It is faster
(C) It is TTL compatible
(D) It has drive capability
67. Hydrofluoric acid is preferred in wet etching. Which of the following is/are correct for Hydrofluoric acid (HF) ?
(1) HF does not attack SiO_{2}
(2) HF attacks SiO_{2}
(3) HF affects silicon substrate underneath
(4) HF does not affect silicon substrate underneath
(A) 1 and 2
(B) 2 and 3
(C) 2 and 4
(D) 1 and 3
68. In the case of degenerate P-type material which of the following is/are correct ?
(1) Acceptor concentration is very high
(2) Donor concentration is very high
(3) The Fermi level lies in the valence band
(4) The Fermi level lies in the conduction band
(A) 1 only
(B) 2 only
(C) 2 and 4
(D) 1 and 3
69. Which solution is used when the silicon water undergoes chemical-mechanical polishing ?
(A) a slurry of very fine SiO_{2} particles in basic KOH solution
(B) a slurry of very fine SiO_{2} particles in a basic NaOH solution
(C) a slurry of very fine SiO_{2} solution only
(D) in a NaOH solution only
70. Match List I with List II :

List I

(a) $\mathrm{Si}+\mathrm{O}_{2}$
(b) $\mathrm{Si}+2 \mathrm{H}_{2} \mathrm{O}$
(c) Ion implantation
(d) Rapid thermal processing

List II

(1) Wet oxidation
(2) Operates for only few seconds at high temperatures
(3) Dry oxidation
(4) Projected range

Codes :

(a) (b) (c) (d)
(A) (3) (1) (2) (4)
(B) (1) (3) (4) (2)
(C) (3) (1) (4)
(2)
(D) (1) (2) (4) (3)

JUN - 38220/II—C

71. The RC circuit shown in the following figure, is :

(A) a low pass filter
(B) a high pass filter
(C) a band pass filter
(D) a band reject filter
72. If the transfer function of the following network is

$$
\frac{\mathrm{V}_{o}(s)}{\mathrm{V}_{i}(s)}=\frac{1}{2+\mathrm{SCR}},
$$

then the value the Load Resistor R_{L} is :
(A) $\mathrm{R} / 4$
(B) $\mathrm{R} / 2$
(C) R
(D) $2 R$
73. Superposition theorem is essentially based on the concept of :
(A) Duality
(B) Linearity
(C) Reciprocity
(D) Non-linearity
74. A source of angular frequency 1 radian/second has a source impedance consisting of 1Ω resistance in series with 1 H inductance. The load that will obtain the max power transfer is :
(A) 1Ω resistance
(B) 1Ω resistance in parallel with 1 H inductance
(C) 1Ω resistance in series with 1 F capacitor
(D) 1Ω resistance in parallel with 1 F capacitor
75. A DC voltage source is connected across a series RLC circuit. Under steady state conditions, the applied DC voltage drops entirely across the :
(A) C only
(B) L only
(C) R only
(D) R and L combinations
76. Consider a DC voltage source V_{S} connected to a series RC circuit. When the steady state reaches, the ratio of the energy stored in the capacitor to the total energy supplied by the voltage source is equal to :
(A) 0.322
(B) 0.632
(C) 0.500
(D) 1.000

JUN - 38220/II—C

77. Convolution of :

$$
x(n)=(1,2,1) \text { and } h(n)=\{1,2,-1\}
$$

will be :
(A) $\{1,4,4,1,-1\}$
(B) $\{1,1,4,4,-1\}$
(C) $\{1,-1,1,4,4\}$
(D) $\{4,4,1,1\}$
78. z-transform of $x\left(n-n_{0}\right)$ is :
(A) $z^{-n_{0}} \mathrm{X}(2)$
(B) $z^{+n_{0}} \mathrm{X}(2)$
(C) $\mathrm{X}(z-20)$
(D) $z^{-n} \cdot \mathrm{X}(2)$
79. Image impedances of port 1 and port 2 of symmetrical two-port network is :
(A) Zero
(B) Infinite
(C) Equal
(D) Not equal
80. Laplace transform of parabolic function is :
(A) $2 / s$
(B) $1 / s^{2}$
(C) $1 / s^{3}$
(D) $2 / s^{3}$
81. Which of the following does not adopt any feedback ?
(A) Phase shift oscillator
(B) UJT relaxation oscillator
(C) Wein-Bridge oscillator
(D) Colpit's oscillator
82. Estimate V_{GS} in the following circuit :

(A) 1.5 V
(B) 4.9 V
(C) 3.5 V
(D) 2.9 V
83. In LM 317 minimum value of voltage required between its input and output for proper functioning is :
(A) 3 V
(B) 1 V
(C) 5 V
(D) 10 V
84. Gain bandwidth product of an amplifier after inclusion of negative feedback :
(A) Decreases
(B) Increases
(C) Remains constant
(D) Becomes zero
85. Bridge rectifier is an alternative to :
(A) Full wave rectifier
(B) Half wave rectifier
(C) Voltage regulator
(D) π-section filter
86. Which of the following holds good for a phase locked loop ?
(A) Lock range < capture range
(B) Lock range $>$ capture range
(C) VCO frequency > input frequency during lock
(D) VCO input voltage is zero during lock
87. Which of the following can be used as a substitute for analog to digital conversion ?
(A) Frequency to voltage convertor
(B) Astable multivibrator
(C) Voltage to frequency convertor
(D) Voltage regulator
88. Starting from AC mains towards load, identify the correct sequence of building block of a regulated power supply :
(A) Rectifier, Regulator, Filter, Transformer
(B) Transformer, Filter, Regulator, Rectifier
(C) Transformer, Rectifier, Filter, Regulator
(D) Regulator, Transformer, Rectifier, Filter
89. Match the pairs between List I and List II :

List I

(a) Negative feedback
(b) Bipolar junction transistor
(c) Operational amplifier
(d) Schmitt Trigger

List II

(1) Comparator with controlled hysteresis
(2) Increased stability
(3) Current controlled current amplifier
(4) High open loop gain

Codes :
(a) (b) (c) (d)
(A) (2) (3) (1) (4)
(B) (3) (1) (2) (4)
(C) (2) (3) (4) (1)
(D) (1) (2) (3) (4)
90. Assertion (A) :

Current gain of a Darlington pair is much higher compared to that of individual transistor.

Reason (R) :
Input impedance is high due to negative feedback.
(A) Both (A) and (R) are true and (R) is the correct explanation of (A)
(B) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(C) (A) is true but (R) is false
(D) (A) is false and (R) is true
91. A demultiplexer is called a data distributor because :
(A) The input is distributed to one of the outputs
(B) One of the inputs is selected for the output
(C) The output is distributed to one of the inputs
(D) The output is buffered
92. A 4-bit synchronous counter uses flip-flops with propagation delay of 15 ns . The maximum possible time required for change of state will be \qquad and that in case of asynchronous counter will be :
(A) 45 ns and 60 ns
(B) 60 ns and 15 ns
(C) 15 ns and 60 ns
(D) 30 ns and 15 ns
93. The state diagram for a JKFF consists of :
(A) One state
(B) Two states
(C) Three states
(D) Four states

JUN - 38220/II—C

94. The following HDL statement will implement : assign $Y=(A \& \& S) \|(B \& \& S)$.
(A) 4-bit Encoder
(B) 4-bit Decoder
(C) 2:1 Multiplexer
(D) 1:2 DEMUX
95. The minimum number of bits of ADC required to monitor the temperature in the range $0-100^{\circ} \mathrm{C}$ with resolution of $1^{\circ} \mathrm{C}$ and the corresponding output at $25^{\circ} \mathrm{C}$ will be :
(A) 8-bits and 01000000
(B) 6-bits and 110000
(C) 12-bits and 000010101111
(D) 10-bits and 1000101000
96. An amount of memory required to store a 256 gray shade monochrome image with 512×512 resolution will be :
(A) 256 K bytes
(B) 512 K bytes
(C) 1 M bytes
(D) 64 K bytes
97. In a data transmission system, the set of possible symbols is : $\{$ lower-case alphabet $\} \cup\{$ upper-case alphabet $\} \cup\{$ space, comma, full stop, end of transmission\}

Where \cup denotes the union of two sets. How many bits of information will be required for the symbols? And how much time will be required to transmit "Department of Electronic Sciences" at 9600 baud ?
(A) 7-bits and 33 ms
(B) 6 -bits and 40 ms
(C) 7-bits and 40 ms
(D) 8 -bits and 30 ms
98. In terms of increasing speeds the ADCs can be listed as :
(A) Successive approximation, dual slope, flash
(B) Dual slope, successive approximation, flash
(C) Dual slope, flash, successive approximation
(D) Flash, dual slope, successive approximation
99. Match the List I with List II and select the correct answer using the codes given below it :

List I

(a) SRAM
(b) DRAM
(c) Flash Memory
(d) Hard Disk

List II

(1) Floating gate MOSFET
(2) Flip-Flop
(3) Magnetic
(4) MOSFET

Codes :

(a) (b) (c) (d)
(A) (1) (2) (3) (4)
(B) (2) (4) (3) (1)
(C) (2) (4) (1) (3)
(D) (4) (1) (2) (3)

100. Assertion (A) :

Multiplexer can be used as a configurable logic block.

Reason (R) :

Multiplexer acts a Boolean processor.
(A) Both (A) and (R) are true and (R) is the correct explanation of (A)
(B) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(C) (A) is true but (R) is false
(D) (A) is false and (R) is true
JUN - 38220/II—C

ROUGH WORK

