Test Booklet Code \& Serial No. प्रश्नपत्रिका कोड व क्रमांक
 Paper-II
 MATHEMATICAL SCIENCE

 A

 A}

Seat No. \square
Signature and Name of Invigilator

1. (Signature) \qquad (In figures as in Admit Card)
Seat No. \qquad (In words)

OMR Sheet No.

(To be filled by the Candidate)

[Maximum Marks : 200
Number of Questions in this Booklet : 190
2. This paper consists of $\mathbf{1 9 0}$ objective type questions. Each question will carry two marks. Candidates should attempt all questions either from sections I \& II or from sections I \& III only.
At the commencement of examination, the question booklet will be given to the student. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as ollows :
(i) To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal or open booklet.
(ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to missing pages/questions or questions repeated or not in serial order or any other discrepancy should not be accepted and correct booklet should be obtained from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given. The same may please be noted
(iii) After this verification is over, the OMR Sheet Number should be entered on this Test Booklet.
each question has four alternative responses marked (A), (B) C) and (D). You have to darken the circle as indicated below on he correct response against each item.
Example : where (C) is the correct response.

5. Your responses to the items are to be indicated in the OMR Sheet given inside the Booklet only. If you mark at any place other than in the circle in the OMR Sheet, it will not be evaluated. Read instructions given inside carefully.
Rough Work is to be done at the end of this booklet. If you write your Name, Seat Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, you will render yourself liable to disqualification.
9. You have to return original OMR Sheet to the invigilator at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are, however, allowed to carry the Test Booklet and duplicate copy of OMR Sheet on conclusion of examination.
10. Use only Blue/Black Ball point pen.
11. Use of any calculator or log table, etc., is prohibited. There is no negative marking for incorrect answers.

विद्यार्थ्यांसाठी महत्त्वाच्चा सूचना

1. परिक्षार्थींनी आपला आसन क्रमांक या पृष्ठावरील वरच्या कोप-यात लिहावा तसेच आपणांस दिलेल्या उत्तरपत्रिकेचा क्रमांक त्याखाली लिहावा.
2. सदर प्रश्नपत्रिकेत 190 बहुपर्यायी प्रश्न आहेत. प्रत्येक प्रश्नास दोन गुण आहेत. विद्यार्थ्यांनी खण्ड I व II किंवा खण्ड I व III मधील सर्व प्रश्न सोडविणे अनिवार्य आहे.
3. परीक्षा सुरुरू झाल्यावर विद्यार्थ्याला प्रश्नपत्रिका दिली जाईल. सुरुवातीच्या 5 मिनीटांमध्ये आपण सदर प्रश्नपत्रिका उघडून खालील बाबी अवश्य तपासून पहाव्यात.
(i) प्रश्नपत्रिका उघडण्यासाठी प्रश्नपत्रिकेवर लावलेले सील उघडावे. सील नसलेली किंवा सील उघडलेली प्रश्नपत्रिका स्विकारू नये.
(ii) पहिल्या पृष्ठावर नमूद केल्याप्रमाणे प्रश्नपत्रिकेची एकूण पृष्ठे तसेच प्रश्नपत्रिकेतील एकूण प्रश्नांची संख्या पडताळून पहावी. पृष्ठे कमी असलेली/कमी प्रश्न असलेली/प्रश्नांचा चुकीचा क्रम असलेली किंवा इतर त्रुटी असलेली सदोष प्रश्नपत्रिका सुरुवातीच्या 5 मिनिटातच पर्यवेक्षकाला परत देऊन दुसरी प्रश्नपत्रिका मागवून घ्यावी. त्यानंतर प्रश्नपत्रिका बदलून मिळणार नाही तसेच वेळही वाढवून मिळणार नाही याची कृपया विद्यार्थ्यांनी नोंद घ्यावी.
(iii) वरीलप्रमाणे सर्व पडताळून पाहिल्यानंतरच प्रश्नपत्रिकेवर ओ.एम.आर. उत्तरपत्रिकेच नंबर लिहावा.
4. प्रत्येक प्रश्नासाठी (A), (B), (C) आणि (D) अशी चार विकल्प उत्तरे दिली आहेत. त्यातील योग्य उत्तराचा रकाना खाली दर्शविल्याप्रमाणे ठळकपणे काळा/निव्ब करावा.
उदा. : जर (C) हे योग्य उत्तर असेल तर.

5. या प्रश्नपत्रिकेतील प्रश्नांची उत्तरे ओ.एम.आर. उत्तरपत्रिकेतच दर्शवावीत. इतर ठिकाणी लिहिलेली उत्तरे तपासली जाणार नाहीत.
6. आत दिलेल्या सूचना काळजीपूर्वक वाचाव्यात.
7. प्रश्नपत्रिकेच्या शेवटी जोडलेल्या को-या पानावरच कच्चे काम करावे.
8. जर आपण ओ.एम.आर. वर नमूद केलेल्या ठिकाणा व्यतिरीक्त इतर कोठेही नाव, आसन क्रमांक, फोन नंबर किवा ओळख पटेल अशी कोणतीही खण केलेली आढळ्ून आल्यास अथवा असभ्य भाषेचा वापर किंवा इतर गैरमार्गांचा अवलंब केल्यास विद्यार्थ्याला परीक्षेस अपात्र ठरविण्यात येईल.
9. परीक्षा संपल्यानंतर विद्यार्थ्याने मूळ ओ.एम.आर. उत्तरपत्रिका पर्यवेक्षकांकडे परत करणे आवश्यक आहे. तथापि, प्रश्नपत्रिका व ओ. एम.आर. उत्तरपत्रिकेची द्वितीय प्रत आपल्याबरोबर नेण्यास विद्यार्थ्यांना परवानगी आहे.
फक्त निक्या किंवा काळ्या बॉल पेनचाच वापर करावा.
कॅलक्युलेटर किंवा लॉग टेबल वापरण्यास परवानगी नाही. चुकीच्या उत्तरासाठी गुण कपात केली जाणार नाही.

JUN - 30219/II—A

Mathematical Science Paper II

Time Allowed : 120 Minutes]
[Maximum Marks : 200
Note : This Paper contains One Hundred Ninety (190) multiple choice questions in THREE (3) sections, each question carrying TWO (2) marks. Attempt all questions either from Sections I \& II only or from Sections I \& III only. The OMR sheets with questions attempted from both the Sections viz. II \& III, will not be assessed.
Number of questions, sectionwise :
Section I : Q. Nos. 1 to 10, Section II: Q. Nos. 11 to 100, Section III : Q. Nos. 101 to 190.

SECTION I

1. Let for $n \in \mathbf{N}, \mathrm{I}_{n}=\left(0, \frac{1}{n}\right)$, $\mathrm{J}_{n}=\left[0, \frac{1}{n}\right], \mathrm{K}_{n}=(n, \infty)$ and $\mathrm{L}_{n}=[n, \infty)$. Which of the following sets is non-empty?
(A) $\bigcap_{n=1}^{\infty} \mathrm{I}_{n}$
(B) $\bigcap_{n=1}^{\infty} \mathrm{J}_{n}$
(C) $\bigcap_{n=1}^{\infty} \mathrm{K}_{n}$
(D) $\bigcap_{n=1}^{\infty} \mathrm{L}_{n}$
2. Let $f(x, y)=|\sin x-\sin y|$ for $x, y \in \mathbf{R}$. Then :
(A) $f(x, y) \leq|x|$ for all x, y
(B) $f(x, y) \leq|x-y|$ for all x, y
(C) $f(x, y) \neq 0$ for $x \neq y$
(D) $f(x, y) \geq|y|$ for all x, y
3. Limsup of the sequence $\left\{-2,2,-\frac{3}{2}, \frac{3}{2},-\frac{4}{3}, \frac{4}{3} \ldots \ldots \ldots\right\}$ is :
(A) $3 / 2$
(B) 2
(C) 1
(D) 0
4. One of the values of i^{i} is:
(A) $e^{-\pi / 2}$
(B) $e^{-i \pi / 2}$
(C) $e^{\pi / 2}$
(D) $e^{i \pi / 2}$
5. Let V denote the vector space of $n \times n$ symmetric complex matrices, over \mathbf{R}. Then $\operatorname{dim} \mathrm{V}$ as a vector space over \mathbf{R} is :
(A) n^{2}
(B) $\frac{n^{2}+n}{2}$
(C) $n^{2}+n$
(D) $n^{2}-n$
6. Let $\mathrm{T}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be defined as $\mathrm{T}\left(\bar{e}_{1}\right)=\overline{0}, \mathrm{~T}\left(\bar{e}_{j}\right)=\bar{e}_{j-1}, j=2, \ldots, n$ where $\left\{\bar{e}_{1}, \bar{e}_{2}, \ldots \ldots ., \bar{e}_{n}\right\}$ is the standard basis of \mathbf{R}^{n}. Then :
(A) T is non-linear
(B) T is idempotent
(C) Ker $\mathrm{T}=\{0\}$
(D) T is nilpotent
7. A coin is biased so that head is twice as likely to occur as a tail. If a coin is tossed four times, what is the probability of getting two tails and two heads?
(A) $\frac{3}{8}$
(B) $\frac{8}{27}$
(C) $\frac{1}{8}$
(D) $\frac{4}{27}$
8. Suppose A and B are mutually exclusive events having probabilities $\mathrm{P}(\mathrm{A})=0.25, \mathrm{P}(\mathrm{B})=0.35$. What is the probability that A occurs but B does not?
(A) 0.1
(B) 0.25
(C) 0.4
(D) 0.6
9. The graph given below shows the bounded feasible region (in shaded portion) for the problem :

Max. $\quad z=2 x_{1}+x_{2}-12$,

$$
x_{1}, x_{2} \geq 0
$$

The objective function attains its maximum when :
(A) $x_{1}=1$ and $x_{2}=7$
(B) $x_{1}=3$ and $x_{2}=4$
(C) $x_{1}=3$ and $x_{2}=3$
(D) $x_{1}=3$ and $x_{2}=5$
10. Which of the following statements is true with respect to the optimal solution of an LP problem ?
(A) Every LP problem has an optimal solution.
(B) Optimal solution of an LP problem occurs only at an extreme points of the convex set of feasible solutions.
(C) If optimal solution exists, then there will be always at least one at the corners of the set of feasible solutions.
(D) Every feasible solution is an optimal solution

JUN - 30219/II—A

SECTION II

11. Let X and Y be bounded subsets of \mathbf{R} and let $\mathrm{Z}=\mathrm{X} \cup \mathrm{Y}$. Then :
(A) Z need not be bounded
(B) $\sup Z=\max \{\sup X, \sup Y\}$
(C) Z need not have supremum
(D) Z has maximum
12. Let $f:[0,1] \rightarrow \mathbf{R}$ be continuous and $\int_{0}^{x} f=\int_{x}^{1} f$ for all $x \in[0,1]$. Then :
(A) f is strictly monotonic
(B) f is constant
(C) $f(t)=t$ for all $t \in[0,1]$
(D) $f(t)=t^{2}$ for all $t \in[0,1]$
13. Suppose $f(x)$ is defined on $[0,1]$ as follows :
$f(x)= \begin{cases}0, & \text { if } x \text { irrational } \\ 1 / q, & \text { if } x \text { rational }\end{cases}$
and $x=\frac{p}{q}$ with $(p, q)=1$. Then f is :
(A) Riemann integrable
(B) Continuous at rational points
(C) Discontinuous at irrational points
(D) Discontinuous everywhere
14. Consider the function :

$$
f(x)= \begin{cases}x^{2} \sin (1 / x), & \text { if } 0<x \leq 1 \\ 0, & \text { if } x=0\end{cases}
$$

Then :
(A) f is not continuous at $x=0$
(B) f is continuous but not differentiable at $x=0$
(C) f is differentiable but not of bounded variation
(D) f is of bounded variation
15. Let A and B be two non-empty disjoint subsets of \mathbf{R} and let $d(\mathrm{~A}, \mathrm{~B})=\inf \{|a-b|: a \in \mathrm{~A}$, $b \in \mathrm{~B}\}$. Then $d(\mathrm{~A}, \mathrm{~B})>0$ if :
(A) A and B are open
(B) A and B are closed
(C) A is closed and B is compact
(D) A or B is singleton
16. The number of Mobius transformations which map the real line onto the unit circle is :
(A) 0
(B) 1
(C) 2
(D) Infinitely many
17. The set $\left\{z \in \mathbf{C}:\left|e^{z}\right|=2019\right\}$ represents:
(A) the line $x=\log (2019)$
(B) the line $y=2019$
(C) a circle
(D) a countable set
18. For $z=x+i y$, let $f(z)=x^{2}+y^{2}+$ $2 x y i$. Then :
(A) f is everywhere analytic
(B) f is nowhere analytic
(C) f is analytic only at $z=0$
(D) f is analytic at every point on the real axis and nowhere else
19. Let $v:[0,1] \rightarrow \mathbf{C}$ be defined by $v(t)=e^{4 \pi i t}$. Then :

$$
\frac{1}{2 \pi i} \int_{v} \frac{e^{z}}{z^{3}} d z=
$$

(A) 0
(B) 1
(C) 2
(D) $4 \pi i$
20. Let $f(z)=\operatorname{cosec}\left(\frac{1}{z-1}\right)$ for $z \neq 1$, $z \in \mathbf{C}$. Then at the point $z=1$, f has :
(A) no singularity
(B) a removable singularity
(C) a pole
(D) a non-isolated singularity
21. Let G be a finite group of order $2 n$. Then the number of elements of order 2 in G is :
(A) $2 r$ for some $1 \leq r \leq n$
(B) $2 r+1$ for some $1 \leq r \leq n-1$
(C) n if n is even
(D) $n+1$ if n is odd
22. Let H be a proper subgroup of the additive group ($\mathrm{Q},+$) of rational numbers. Then the quotient group Q/H must be :
(A) finite of even order
(B) finite of odd order
(C) finite
(D) infinite
23. Let G be a group of order 61 . Then the number of subgroups of G is :
(A) 61
(B) 2
(C) 7
(D) 1
24. Let G be the group of invertible 2×2 matrices over the field $\mathbf{Z}_{2}=\{0,1\}$. Then the number of elements in G is :
(A) 6
(B) 2
(C) 4
(D) 8

JUN - 30219/II—A

25. Which of the following is a PID ?
(A) $\mathbf{Z}[x]$
(B) $\mathbf{R}(x)[y]$
(C) $\mathbf{C}[x, y]$
(D) \mathbf{Z}_{30}
26. Let W be the subspace of \mathbf{R}^{4} spanned by the vectors $\left[\begin{array}{ccc}1 & 2 & 0\end{array} 0^{t}\right.$, $\left[\begin{array}{llll}0 & 1 & 2 & 0\end{array}\right]^{t}$ and $\left[\begin{array}{llll}1 & 1 & -2 & 0\end{array}\right]^{t}$. The dimension of the quotient space $\mathbf{R}^{4} / \mathrm{W}$ is :
(A) 1
(B) 2
(C) 3
(D) 4
27. Which of the functions defines an inner product on \mathbf{C}^{2} ? Let $x=\left[x_{1}, x_{2}\right]^{t}, y=\left[y_{1}, y_{2}\right]^{t} ?$
(i) $(x, y)=x_{1} \bar{y}_{2}$
(ii) $(x, y)=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}$
(iii) $(x, y)=x_{1} y_{1}+x_{2} y_{2}$
(A) (ii) and (iii)
(B) (i)
(C) (ii)
(D) (iii)
28. If $\mathrm{T}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ is given by :

$$
\mathrm{T}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x+z}{y-z}
$$

then the matrix representation of T with respect to standard bases of \mathbf{R}^{3} and \mathbf{R}^{2} is :
(A) $\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 1 & -1\end{array}\right)$
(B) $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -1\end{array}\right)$
(C) $\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 1\end{array}\right)$
(D) $\left(\begin{array}{cc}0 & 1 \\ 1 & 0 \\ -1 & 1\end{array}\right)$
29. If a real matrix A has characteristic polynomial $(x-1)\left(x^{2}+1\right)$, then which of the following statements about A is true ?
(A) A is diagonalizable over \mathbf{R}
(B) A is triangulable over \mathbf{R}
(C) A is nilpotent
(D) A is invertible
30. Let V, W be two complex vector spaces and $T \in L(V, W)$. If T has matrix representation :

$$
\left[\begin{array}{ccc}
2 & 1+i & 3 \\
4+i & 1-i & i
\end{array}\right]
$$

Which of the following matrices represents the adjoint map T^{*} ?
(A) $\left(\begin{array}{ccc}2 & 1-i & 3 \\ 4-i & 1+i & -i\end{array}\right)$
(B) $\left(\begin{array}{cc}2 & 4+i \\ 1+i & 1-i \\ 3 & i\end{array}\right)$
(C) $\left(\begin{array}{cc}2 & 4-i \\ 1-i & 1+i \\ 3 & -i\end{array}\right)$
(D) $\left(\begin{array}{ccc}2 & 1+i & 3 \\ 4+i & 1-i & i\end{array}\right)$
31. A set of all surfaces of revolution with z-axis as the axis of revolution is characterized by the partial differential equation :
(A) $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=0$
(B) $x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}=0$
(C) $y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=0$
(D) $y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=0$
32. The solution of the partial differential equation :

$$
\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=0
$$

is :
(A) $z=x \phi_{1}(x+y)+y \phi_{2}(x-y)$
(B) $z=x \phi_{1}(x+y)+\phi_{2}(x-y)$
(C) $z=\phi_{1}(x+y)+\phi_{2}(x-y)$
(D) $z=\phi_{1}(x+y)+x \phi_{2}(x-y)$
33. An nth order linear ordinary differential equation :
(A) has exactly n linearly independent solutions
(B) has at most n linearly independent solutions
(C) has less than n independent solutions
(D) has minimum n linearly independent solutions

JUN - 30219/II—A

34. The solution of the differential equation

$$
y^{1}-2 x y=x y^{2}
$$

is :
(A) $\left[-\frac{1}{2}+c e^{-x^{2}}\right]^{2}$
(B) $\left[-\frac{1}{2}+c e^{-x^{2}}\right]^{-1}$
(C) $\left[-\frac{1}{2}+c e^{x^{2}}\right]^{-1}$
(D) $\left[-\frac{1}{2}+c e^{x^{2}}\right]^{2}$
35. Let D be the rectangle :

$$
\left\{(x, y) \in \mathbf{R}^{2}| | x|\leq 1,|y| \leq 1\}\right.
$$

and h and g are functions defined on D given by :

$$
\begin{aligned}
& h(x, y)=x y^{2} \text { and } \\
& g(x, y)=y^{2 / 3}
\end{aligned}
$$

Then :
(A) Only h satisfies Lipschitz condition on D
(B) Only g satisfies Lipschitz condition on D
(C) Both h and g satisfy Lipschitz condition on D
(D) Neither h nor g satisfies Lipschitz condition on D
36. The assignment cost of assigning any one operator to any one machine is given in the following table :

Operators

Machines $\left.\begin{array}{r}\mathbf{U} \\ \mathbf{U} \\ \mathbf{W} \\ \mathbf{X}\end{array} \begin{array}{cccc}\text { I } & \text { II } & \text { III } & \text { IV } \\ 10 & 5 & 13 & 15 \\ 3 & 9 & 18 & 3 \\ 10 & 7 & 3 & 2 \\ 5 & 11 & 9 & 7\end{array}\right]$

The optimal assignment is :
(A) $\mathrm{U} \rightarrow$ II, V \rightarrow III, W \rightarrow I, $\mathrm{X} \rightarrow$ IV
(B) $\mathrm{U} \rightarrow$ II, V \rightarrow IV, W \rightarrow III, $\mathrm{X} \rightarrow$ I
(C) $\mathrm{U} \rightarrow$ III, V \rightarrow IV, W \rightarrow II, $\mathrm{X} \rightarrow$ I
(D) $\mathrm{U} \rightarrow$ IV, V \rightarrow II, W \rightarrow III, $\mathrm{X} \rightarrow$ I
37. Consider the following LP problem :

Max. : $\mathrm{Z}=x_{1}+x_{2 / 2}$
Subject to the constraints :

$$
\begin{aligned}
3 x_{1}+2 x_{2} & \leq 12 \\
5 x_{1} & =10 \\
x_{1}+x_{2} & \geq 8 \\
-x_{1}+x_{2} & \geq 4 \text { and } \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

Then the LP problem has :
(A) Feasible solution
(B) No feasible solution
(C) Degenerate feasible solution
(D) Non-degenerate feasible solution

JUN - 30219/II—A

38. Let the primal maximization LP problem has m constraints and n non-negative variables. Then consider the following two statements about it :
(I) The dual have n constraints and m non-negative variables.
(II) The dual is a minimization problem.
Which of the following is true ?
(A) Only (I) is true
(B) Only (II) is true
(C) Both are true
(D) Neither (I) nor (II) is true
39. Consider the LP problem :

Max. : $Z=4 x_{1}+2 x_{2}$
Subject to the constraints :

$$
\begin{aligned}
-x_{1}-x_{2} & \leq-3 \\
-x_{1}+x_{2} & \geq-2 \text { and } \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

Then the dual of the above LP problem is :
Min. : $\mathrm{W}=p y_{1}+q y_{2}$
Subject to the constraints :

$$
\begin{aligned}
r y_{1}+s y_{2} & \geq 4 \\
-y_{1}-y_{2} & \geq 2 \\
y_{1}, y_{2} & \geq 0,
\end{aligned}
$$

where the values of p, q, r, s are :
(A) $p=3, q=-2, r=-1, s=-1$
(B) $p=-3, q=-2, r=1, s=-1$
(C) $p=3, q=-2, r=1, s=-1$
(D) $p=-3, q=2, r=-1, s=1$
40. If the dual problem has an unbounded solution, then primal has:
(A) No feasible solution
(B) Unbounded solution
(C) Feasible solution
(D) None of the above
41. L et $f:[a, b] \rightarrow \mathbf{R}$ be a continuous function. Then which of the following statements is not true for the image set of $f, \mathrm{I}_{m} f$?
(A) $\mathrm{I}_{m} f$ is unbounded
(B) $\mathrm{I}_{m} f$ has maximum
(C) $\mathrm{I}_{m} f$ is an interval
(D) $\mathrm{I}_{m} f$ has minimum
42. The function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $f(x, y)=\left(2 x y, x^{2}-y^{2}\right)$ is one-one on the set :
(A) $\left\{(x, y) \in \mathbf{R}^{2} / y \geq 0\right\}$
(B) $\left\{(x, y) \in \mathbf{R}^{2} / x^{2}+y^{2} \leq 1\right\}$
(C) $\left\{(x, y) \in \mathbf{R}^{2} / \frac{1}{2}<x<1,|y|<\frac{1}{4}\right\}$
(D) \mathbf{R}^{2}
43. Let $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be defined by the equation $f(x, y, z)=(x y, y+z)$ and $g: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be defined as $g(x, y)=(x+y, y)$. Then the derivative $\mathrm{D}(g \circ f)(0,0,0)=$
(A) $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
(B) $\left[\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right]$
(C) $\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$
(D) $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$
44. Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be a bijective analytic function. Then :
(A) f must be a linear polynomial
(B) $f^{\prime}(z)=0$ for some z
(C) $f^{-1}(z)$ may not be continuous
(D) $f^{-1}(z)$ is continuous but may not be analytic
45. Which of the following is not possible for an analytic function f on $\mathrm{D}=\{z:|z|<1\} ?$
(A) $f(\mathrm{D})=\{z:|z| \leq 1\}$
(B) $f(\mathrm{D})=\mathrm{D}$
(C) $f(\mathrm{D})=\left\{z:|z|<\frac{1}{2}\right\}$
(D) $f(\mathrm{D}) \subseteq \mathbf{R}$
46. Let $f(z)$ and $g(z)$ be two non-constant analytic functions on a region G. Then which of the following is possible ?
(A) $f-\bar{g}$ is analytic
(B) $f+\bar{g}$ is analytic
(C) $\bar{f}+\bar{g}$ is analytic
(D) $f g \equiv 0$
47. Let p be a prime number and \mathbf{F}_{p} be a finite field with p elements. Then the unit group $\mathbf{F}_{p}^{x}=\mathbf{F}_{p} \backslash\{0\}$ of \mathbf{F}_{p} is simple if and only if :
(A) $p=2$
(B) $p=3$
(C) $p \geq 5$
(D) p is of the form $2^{n}+1$ for some $n \geq 2$.

JUN - 30219/II—A

48. Let x be the image of X in the quotient ring $\mathrm{A}:=\mathbf{R}[\mathrm{X}, \mathrm{Y}] /\left\langle\mathrm{X}^{2}+\mathrm{Y}^{2}-1\right\rangle$. Then the element x is :
(A) not irreducible in A
(B) irreducible, but not prime in A
(C) prime in A
(D) a unit in A
49. The quadratic form associated to the trace form $\operatorname{Tr}_{\mathbf{R}}^{\mathbf{C}}: \mathbf{C} \times \mathbf{C} \rightarrow \mathbf{R}$, $(x, y) \mapsto \operatorname{Tr}\left(\lambda_{\mathrm{XY}}\right)$, where $\lambda_{\mathrm{XY}}: \mathbf{C} \rightarrow \mathbf{C}$ is the \mathbf{R}-linear map defined by $\lambda_{\mathrm{XY}}(z)=x y z$, is :
(A) X^{2}
(B) Y^{2}
(C) $\mathrm{X}^{2}+\mathrm{Y}^{2}$
(D) $\mathrm{X}^{2}-\mathrm{Y}^{2}$
50. With the induced topology by the metric $d(x, y)=|x-y|$,
(A) \mathbf{R} and \mathbf{Q} are of second category
(B) \mathbf{R} is of second category and \mathbf{Q} is not
(C) \mathbf{Q} is of second category and \mathbf{R} is not
(D) Both \mathbf{R} and \mathbf{Q} are not of second category
51. Let L be a countable subset of \mathbf{R} and M be a Lebesgue measurable subset of \mathbf{R} with $m(\mathrm{M})>0$. If $\mathrm{N}=\mathrm{L} \cup \mathrm{M}$ and $\mathrm{O}=(\mathrm{L} \cup \mathrm{M}) \backslash(\mathrm{L} \cap \mathrm{M})$, then :
(A) $m(\mathrm{M})=m(\mathrm{~N})=m(\mathrm{O})$
(B) $m(\mathrm{M})<m(\mathrm{~N})=m(\mathrm{O})$
(C) $m(\mathrm{M})=m(\mathrm{~N})<m(\mathrm{O})$
(D) $m(\mathrm{M})<m(\mathrm{~N})<m(\mathrm{O})$
52. Let X be a metric space and $\mathrm{Y} \subset \mathrm{X}$:
(A) If Y is dense in X , then $\mathrm{X} \backslash \mathrm{Y}$ is nowhere dense in X
(B) If Y is nowhere in X , then $\mathrm{X} \backslash \mathrm{Y}$ is dense in X
(C) If Y is dense in X, then $\operatorname{Int}(\mathrm{Y}) \neq \phi$
(D) If Y is dense in X, then $\operatorname{Int}(\mathrm{X} \backslash \mathrm{Y}) \neq \phi$
53. There is a non-abelian group of order :
(A) 49
(B) 41
(C) 15
(D) 12
54. The group \mathbf{Z}_{72} is the direct product of groups as :
(A) $\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{3} \times \mathbf{Z}_{3}$
(B) $\mathbf{Z}_{36} \times \mathbf{Z}_{36}$
(C) $\mathbf{Z}_{9} \times \mathbf{Z}_{8}$
(D) $\mathbf{Z}_{2} \times \mathbf{Z}_{36}$
55. Let p be a prime number and n, m natural numbers with m divides n. Then the finite extension $\mathbf{F}_{p} n / \mathbf{F}_{p} m$ of finite fields is a :
(A) Galois extension with abelian but non-cyclic Galois group of order $\frac{n}{m}$
(B) Galois extension with cyclic Galois group of order $\frac{n}{m}$
(C) Galois extension with abelian but non-cyclic Galois group of order $n m$
(D) Galois extension with cyclic Galois group of order $n m$
56. Let $a_{n}=\left(n!\frac{1}{2 n}\right.$ and $b_{n}=\left(\frac{1}{n^{2}}\right)^{\frac{1}{3 n}}$.

Then the sequences:
(A) $\left(a_{n}\right)_{n},\left(b_{n}\right)_{n} \in l^{\infty}$
(B) $\left(a_{n}\right)_{n} \in l^{\infty}$ and $\left(b_{n}\right)_{n} \notin l^{\infty}$
(C) $\left(a_{n}\right)_{n} \notin l^{\infty}$ and $\left(b_{n}\right)_{n} \in l^{\infty}$
(D) $\left(a_{n}\right)_{n} \notin l^{\infty}$ and $\left(b_{n}\right)_{n} \notin l^{\infty}$
57. For any sequence $\left(\alpha_{n}\right)$ of real numbers, define $\mathrm{T}\left(\alpha_{n}\right): l^{2} \rightarrow l^{2}$ by $\left.\mathrm{T}\left(\alpha_{n}\right)\left(e_{k}\right)=\alpha_{k} e_{k}\right)$. The number of unitary operators of the form $\mathrm{T}\left(\alpha_{n}\right)$ on l^{2} is :
(A) finite, but more than 1
(B) countably infinite
(C) uncountably many
(D) zero

JUN - 30219/II—A

58. Let
$\mathrm{V}=\left\{f \in \mathrm{C}[0,1]: f(t)=0 \forall t \leq \frac{1}{2}\right\}$
and
$\mathrm{W}=\left\{f \in \mathrm{C}[0,1]: f(t)=0 \forall t>\frac{1}{2}\right\}$.
If $\mathrm{C}[0,1]$ is assigned the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) \overline{g(t)} d t,
$$

then :
(A) $\mathrm{C}[0,1]$ is the orthogonal direct sum of V and W
(B) $\mathrm{C}[0,1]$ is the direct sum of V and W, but not the orthogonal direct sum
(C) $\mathrm{C}[0,1]$ is a sum of V and W , but not a direct sum
(D) $\mathrm{C}[0,1]$ is not the sum of V and W
59. Let τ be the topology generated by $\{(a, \infty): a \in \mathbf{R}\}$ on \mathbf{R}. In this topology, the closure of $\{0\}$ in \mathbf{R} is :
(A) $\{0\}$
(B) $(-\infty, 0]$
(C) $[0, \infty)$
(D) \mathbf{R}
60. Let
$\mathrm{X}=\left\{(x, y) \in \mathbf{R}^{2}: 0 \leq|x|=|y| \leq 1\right\}$
$\mathrm{Y}=\left\{(x, y) \in \mathbf{R}^{2}:|x|+|y|=1\right\}$ and
$\mathrm{Z}=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}=1\right\}$
be subspaces of the Euclidean space \mathbf{R}^{2}. Then :
(A) X is homeomorphic to Y and Z
(B) X is homeomorphic to Y , but not Z
(C) Y is homeomorphic to Z , but not X
(D) Z is homeomorphic to X , but not Y
61. Let X be a second countable space and $f: \mathrm{X} \rightarrow \mathrm{Y}$ be continuous open surjective map. Then :
(A) Y is second countable
(B) Y is separable, but not second countable
(C) Y is first countable but not separable
(D) Y is separable, but not first countable
62. Consider the following statements :
(I) Every bounded lattice is complete.
(II) Every Boolean lattice is a distributive lattice.
(III)Every complete lattice is bounded.

Then which of the following is true ?
(A) Only (III) is true
(B) Only (II) and (III) are true
(C) Only (II) is true
(D) All are true
63. Let G be a simple graph with degree of every vertex an even number ≥ 2. Then G is :
(A) bipartite
(B) disjoint union of cycles
(C) Hamiltonian
(D) Without a cut vertex
64. Two boys and two girls are lined up randomly in a row. What is the probability that the girls and boys alternate ?
(A) $2 / 3$
(B) $1 / 2$
(C) $1 / 3$
(D) $3 / 4$
65. Let $u(r, \theta)$ be a harmonic function in the disc
$\mathrm{D}=\{(r, \theta) / 0 \leq r<\mathrm{R},-\pi<\theta \leq \pi\}$ such that u is continuous in closed disc $\overline{\mathrm{D}}$ and satisfies :

$$
\begin{aligned}
u(\mathrm{R}, \theta) & =\cos , \quad|\theta| \leq \pi / 3 \\
& =0, \quad \pi / 3<|\theta| \leq \pi
\end{aligned}
$$

The mean value theorem gives the value of $u(0,0)$ as :
(A) $\sqrt{3} / 2 \pi$
(B) 0
(C) $\sqrt{3}$
(D) $\frac{1}{2 \pi}$
66. The equation

$$
3 \Delta u+4 u_{x y}-u^{2}=1
$$

is :
(A) Linear
(B) Hyperbolic
(C) Parabolic
(D) Elliptic
67. Let u_{1}, u_{2} be two solutions of the Cauchy problem :
$u_{t t}-u_{x x}=x+t^{2}$
$u(x, 0)=\cos x, u_{t}(x, 0)=3$
Then the solutions u_{1} and u_{2} satisfy :
(A) $u_{1} \equiv 2 u_{2}$
(B) $u_{1}+u_{2} \equiv 0$
(C) $u_{1}-u_{2} \equiv 0$
(D) $u_{1} u_{2}=1$
68. Square of any integer is of the form :
(A) $3 k$ or $3 k-1$
(B) $4 k$ or $4 k-1$
(C) $5 k$ or $5 k+1$
(D) $3 k$ or $3 k-2$
69. The last two digits of 3^{123} are :
(A) 47
(B) 67
(C) 27
(D) 87
70. Which of the following natural numbers cannot be written as a sum of 2 squares ?
(A) 405
(B) 1111
(C) 117
(D) 164
71. If a system of n particles with k non-holonomic constraints has r degrees of freedom, then :
(A) $r=3 n-k$
(B) $r=n-k$
(C) $r>3 n-k$
(D) $r<3 n-k$
72. The Lagrangian of a particle of mass m in spherical polar co-ordinates is given by :
$\mathrm{L}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)-m g l \cos \theta$ The quantity that is conserved is:
(A) $\frac{\partial \mathrm{L}}{\partial \dot{r}}$
(B) $\frac{\partial \mathrm{L}}{\partial \dot{\theta}}$
(C) $\frac{\partial L}{\partial \dot{\phi}}$
(D) $\frac{\partial \mathrm{L}}{\partial r}$
73. If the Hamiltonian of the dynamical system is given by $\mathrm{H}=p q$, then as $t \rightarrow \infty$.
(A) $q \rightarrow \infty, p \rightarrow 0$
(B) $q \rightarrow 0, p \rightarrow 0$
(C) $q \rightarrow \infty, p \rightarrow \infty$
(D) $q \rightarrow 0, p \rightarrow \infty$
74. Euler's equation of motion for a rigid body about a fixed point in the absence of any net torque and $\mathrm{I}_{x x}=\mathrm{I}_{y y}$ imply that the z-component of the angular velocity :
(A) satisfies simple harmonic motion
(B) is constant
(C) is always zero
(D) is a function of time
75. If \bar{q} denotes velocity field of an incompressible fluid in motion, then the mass conservation will not imply :
(A) $\nabla \bar{q}=0$
(B) $\frac{\partial \rho}{\partial t}+\nabla \bar{q}=0$
(C) $\frac{\partial \rho}{\partial t}+\nabla(\rho \bar{q})=0$
(D) $\nabla \times \bar{q}=0$
76. If the velocity components of a possible fluid motion are $u=2 c x y$, $v=c\left(a^{2}+x^{2}-y^{2}\right)$ where a, c are non-zero constants, then the stream function ϕ is :
(A) $-c x^{2} y$
(B) $-c\left(x^{2} y+a^{2} y-\frac{y^{3}}{3}\right)$
(C) $2 c x y$
(D) $c\left(a^{2}+x^{2}-y^{2}\right)$
77. The velocity components for twodimensional flow are given by $u=y^{2}-x^{2}, v=2 x y$. The stream function ψ and the velocity potential ϕ of the flow are :
(A) $\phi=x y^{2}+\frac{x^{3}}{3}, \psi=\frac{y^{3}}{3}+x^{2} y$
(B) $\phi=\frac{y^{3}}{3}-x^{2} y, \psi=x y^{2}-\frac{x^{3}}{3}$
(C) $\phi=\frac{x^{3}}{3}-x y^{2}, \psi=x^{2} y-\frac{y^{3}}{3}$
(D) $\phi=\frac{y^{3}}{3}+x^{2} y, \psi=x y^{2}+\frac{x^{3}}{3}$
78. In two-dimensional fluid flow consider a doublet of strength μ placed at $z=z_{0}$ and inclination α to the positive x-axis. The image of this doublet in a straight line is :
(A) a doublet of strength μ placed at $z=-z_{0}$ and inclination α to the positive x-axis.
(B) a doublet of strength μ placed at $z=-\bar{z}_{0}$ and inclination $\pi-\alpha$ to the positive x-axis.
(C) a doublet of strength μ placed at $z=-z_{0}$ and inclination $\pi-\alpha$ to the positive x-axis.
(D) a doublet of strength μ placed at $z=-\bar{z}_{0}$ and inclination α to the positive x-axis.

JUN - 30219/II—A

79. Let the first and second fundamental form of a surface patch are $\mathrm{E} d u^{2}+2 \mathrm{~F} d u d v+\mathrm{G} d v^{2}$ and $\mathrm{L} d u^{2}+2 \mathrm{M} d u d v+\mathrm{N} d v^{2}$ respectively. Then the Gaussian curvature of the patch is :
(A) $\operatorname{det}\left(\begin{array}{ll}\mathrm{E} & \mathrm{F} \\ \mathrm{F} & \mathrm{G}\end{array}\right)$
(B) $\operatorname{det}\left(\begin{array}{ll}L & M \\ M & N\end{array}\right)$
(C) $\quad \operatorname{det}\left(\begin{array}{ll}E & F \\ F & G\end{array}\right) \cdot \operatorname{det}\left(\begin{array}{cc}L & M \\ M & N\end{array}\right)$
(D) $\operatorname{det}\left(\begin{array}{ll}L & M \\ M & N\end{array}\right) / \operatorname{det}\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)$
80. Let v be a unit speed smooth curve in \mathbf{R}^{3} with tangent \bar{t}, normal \bar{n}, binormal \bar{b}. Then :
(A) \bar{t}^{\prime} is orthogonal to \bar{t} and \bar{b}
(B) \bar{t}^{\prime} is orthogonal to \bar{b} and \bar{n}
(C) \bar{t}^{\prime} is orthogonal to \bar{t} and \bar{n}
(D) \bar{t}^{\prime} is not orthogonal to any of \bar{t} or \bar{n} or \bar{b}
81. The Gaussian curvature of the hyperbolic paraboloid $\frac{x^{2}}{2}-\frac{y^{2}}{3}-z=0$ is :
(A) always < 0
(B) always >0
(C) always 0
(D) positive at some points and negative at some points
82. The variational problem of extremizing the functional
$\mathrm{I}[y(x)]=\int_{0}^{2 z}\left(y^{\prime 2}-y^{2}\right) d x, y(0)=1$, $y(2 z)=1$
has:
(A) a unique solution
(B) exactly two solutions
(C) an infinitely many solutions
(D) no solution
83. Any function that gives an extremum of the functional
$\iint_{\mathrm{D}}\left\{z_{x}^{2}+z_{y}^{2}+2 z f(x, y)\right\} d x d y$
must satisfy :
(A) Laplace equation
(B) Heat equation
(C) Wave equation
(D) Poisson equation
84. The curve which extremizes the functional
$\mathrm{I}[y(x)]=\int_{0}^{\pi / 4}\left(y^{\prime \prime 2}-y^{2}+x^{2}\right) d x$
under the conditions $y(0)=0$, $y^{\prime}(0)=1, y(\pi / 4)=y^{\prime}(\pi / 4)=\frac{1}{\sqrt{2}}$ is :
(A) $y(x)=1-\cos x$
(B) $y(x)=\tan x$
(C) $y(x)=\cos x$
(D) $y(x)=\sin x$
85. The shortest arc connecting two points on the surface of a sphere is called :
(A) a great circle arc
(B) a catenary
(C) a catenoid of revolution
(D) a cycloid
86. Consider the following statements :
(I) Every initial value problem can be reduced to a Fredholm integral equation.
(II) Every boundary value problem can be reduced to a Volterra integral equation.

Then :
(A) Only (I) is correct
(B) Only (II) is correct
(C) Both (I) and (II) are correct
(D) Both (I) and (II) are wrong
87. Iterated kernel $\mathrm{K}_{m}(t, s)$ of the integral equation

$$
u(t)=1+\lambda \int_{0}^{t} e^{t-s} u(s) d s
$$

is :
(A) $\frac{(t-s)^{m-1}}{(m-1)!}$
(B) $\frac{e^{t-s}}{(m-1)!}$
(C) $\frac{(t-s)^{m-1}}{(m-1)!} e^{t-s}$
(D) $(t-s) e^{t-s}$

JUN - 30219/II—A

88. Solution of the integral equation $u(t)=a \sin t-2 \int_{0}^{t} \cos (t-s) u(s) d s$ is :
(A) $u(t)=a \sin t$
(B) $u(t)=a \cos t$
(C) $u(t)=a t e^{-t}$
(D) $u(t)=a t^{2} e^{-t}$
89. Which of the following is not correct ?
(A) $(\Delta-\nabla)=\Delta \nabla$
(B) $(1+\Delta)(1-\nabla)=1$
(C) $\mu^{2}=1+\frac{1}{4} \delta^{2}$
(D) $\delta=\mathrm{E}^{\frac{1}{2}}+\mathrm{E}^{-\frac{1}{2}}$
90. The first approximation of the root lying between 0 and 1 of the equation

$$
x^{3}+3 x-1=0
$$

by Newton-Raphson method with initial approximation $x_{0}=0$, is :
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $\frac{1}{5}$
91. For a given initial value problem

$$
y^{\prime}=1+x y, y(0)=2
$$

the value of $y(0.1)$ by Euler's method with $n=0.1$ is :
(A) 2.1
(B) 2.0
(C) 2.2
(D) 2.4
92. Let $\mathrm{L}\{f(t)\}=\mathrm{F}(s)$ and $u(t-a)$ be a unit step function. Then $\mathrm{L}\{f(t-a) u(t-a)\}$ is :
(A) $e^{-a s} \mathrm{~F}(s)$
(B) $\frac{e^{-a s}}{s} \mathrm{~F}(s)$
(C) $e^{a s} \mathrm{~F}(s)$
(D) $\frac{e^{a s}}{s} \mathrm{~F}(s)$
93. Fourier sine transform of

$$
f(t)=\frac{e^{-a t}}{t}, a>0
$$

is :
(A) $\sqrt{\frac{2}{\pi}} \tan ^{-1}\left(\frac{s}{a}\right)$
(B) $\sqrt{\frac{2}{\pi}} \sin ^{-1}\left(\frac{s}{a}\right)$
(C) $\sqrt{\frac{2}{\pi}} \tan \left(\frac{s}{a}\right)$
(D) $\sqrt{\frac{2}{\pi}} \sin \left(\frac{s}{a}\right)$

JUN - 30219/II—A

94. Suppose that the function $y(t)$ satisfies the differential equation : $y^{\prime \prime}-4 y^{\prime}+4 y=0$
with initial condition $y(0)=0$, $y^{\prime}(0)=3$. Then the Laplace transform of $y(t)$ is :
(A) $\frac{3}{(s+2)^{2}}$
(B) $\frac{3}{(s-2)^{2}}$
(C) $\frac{3.5}{(s+2)^{2}}$
(D) $\frac{3.5}{(s-2)^{2}}$
95. Consider the transportation problem

Min. $z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}$
Subject to :
$\sum_{j=1}^{n} x_{i j}=a_{i}, i=1,2, \ldots . ., m$,
$\sum_{i=1}^{m} x_{i j}=b_{j}, j=1,2, \ldots . ., n$ and $x_{i j} \geq 0$
The existence of a feasible solution of the transportation problem is possible :
(I) if $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$
(II) if and only if $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$

Then which of the following is true ?
(A) Only (I) is true
(B) Only (II) is true
(C) Both are true
(D) None of them is true
96. The number of non-isomorphic modular lattices on 5 elements is :
(A) 3
(B) 4
(C) 5
(D) 2
97. Consider the following statements :
(I) Every distributive lattice is complemented and complementation is unique.
(II) Every modular lattice is complemented and complementation is unique
Then which of the following is true ?
(A) (I) is true but (II) is not true
(B) (II) is true but (I) is not true
(C) Neither (I) is true nor (II) is true
(D) Both statements are true
98. Let ($\mathbf{R}, \mathrm{M}, \mu$) be a Lebesgue measure space. Define :

$$
\lambda(\mathrm{A})=\int_{\mathrm{A}} \sin x d \mu
$$

Which of the following statements is true ?
(A) λ defines a measure on \mathbf{R}
(B) λ defines a signed measure on \mathbf{R}
(C) λ does not define a signed measure
(D) λ defines a signed measure on \mathbf{R} but not a measure

JUN - 30219/II—A

99. Let ($\mathbf{R}, \mathbf{M}, \mu$) denote the real line with Lebesgue measure μ. Define $v_{1}(\mathrm{~A})=\int_{\mathrm{A}} f(x) d x$ where :
$f(x)=e^{-x} \quad$ for $x>1$
$=0 \quad$ otherwise
and $v_{2}(\mathrm{~A})=\int_{\mathrm{A}} g(x) d x$ where
$g(x)=e^{-1} \quad$ for $0 \leq x \leq 1$
$=0 \quad$ otherwise
Then :
(A) The measure v_{1} is absolutely continuous with respect to v_{2}
(B) The measure v_{2} is absolutely continuous with respect to v_{1}
(C) v_{1} and v_{2} are mutually singular measures
(D) μ is absolutely continuous with respect to both v_{1} and v_{2}
100. Consider the following two statements for a Lebesgue measurable function $f:[0,1] \rightarrow \mathbf{R}$. (P) f is Lebesgue integrable. (Q) $|f|$ is Lebesgue integrable.

Then which of the following is true ?
(A) $(\mathrm{P}) \nRightarrow(\mathrm{Q})$
(B) $(\mathrm{Q}) \nRightarrow(\mathrm{P})$
(C) $(\mathrm{P}) \Leftrightarrow(\mathrm{Q})$
(D) $(\mathrm{P}) \nRightarrow(\mathrm{Q})$ and $(\mathrm{Q}) \nRightarrow(\mathrm{P})$

SECTION III

101. The 90^{m} sample percentile of 80 observations is 6 . Suppose 6 is added to the 7 largest observations and 3 is subtracted from the remaining observations. The 90^{m} sample percentile of the modified 80 observations is :
(A) 12
(B) 3
(C) 6
(D) 9
102. For two random variables x and y covariance between $2 x$ and y, $\operatorname{cov}(2 x, y)=4$. Hence, $\operatorname{cov}(5 x-2$, $2 y-5)$ is :
(A) 40
(B) 0
(C) 10
(D) 20

JUN - 30219/II—A

103. Let x and y be two independent normal random variables with mean μ_{1} and μ_{2} respectively and common variance σ^{2}. For $0<\alpha<1$ if the 100α th quantile of x is larger than 100α th quantile of y, then :
(A) $\mu_{1}=\mu_{2}$
(B) $\mu_{1}>\mu_{2}$
(C) $\mu_{1}<\mu_{2}$
(D) Nothing can be said about the relationship between μ_{1} and μ_{2}
104. If $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B})$, then :
(A) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{A})$
(B) A and B are independent events
(C) $\mathrm{P}^{2}(\mathrm{~A}) \leq \mathrm{P}(\mathrm{B})$
(D) $\mathrm{P}^{2}(\mathrm{~B}) \leq \mathrm{P}(\mathrm{A})$
105. The probability mass function of a random variable X is given by :

k	0	1	2	3
$\mathrm{P}[\mathrm{X}=k]$	0.2	0.1	p	q

where $p \geq 0$ and $q \geq 0$.
Which of the following is feasible?
(A) $\mathrm{E}[\mathrm{X}]=1.2$
(B) $\mathrm{E}[\mathrm{X}]=2.1$
(C) $\mathrm{E}[\mathrm{X}]=2.8$
(D) $\mathrm{E}[\mathrm{X}]=3.4$
106. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ be independent identically distributed random variables with probability mass function given below :

k	-1	0	1	2
$\mathrm{P}[\mathrm{X}=k]$	0.2	0.3	0.1	0.4

Then $\mathrm{P}\left[\mathrm{X}_{1}+\mathrm{X}_{2}=0 / \mathrm{X}_{2}=1, \mathrm{X}_{3}=2\right]$ is :
(A) 0.11
(B) 0.13
(C) 0.2
(D) 0.3
107. Let $\mathrm{M}_{\mathrm{V}}(t)$ denote the mgf of a random variable V .

Suppose X and Y are two independent r.v.s. whose mgf exists. Let $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$ and $\mathrm{W}=\mathrm{XY}$. Then which of the following is true for all $t \in(-h, h)$ for some $h>0$.
(A) $\mathrm{M}_{\mathrm{Z}}(t)=\mathrm{M}_{\mathrm{X}}(t) \quad \mathrm{M}_{\mathrm{Y}}(t)$ and $\mathrm{M}_{\mathrm{W}}(t)=\int \mathrm{M}_{\mathrm{Y}}(t x) f_{\mathrm{X}}(x) d x$
(B) $\mathrm{M}_{\mathrm{Z}}(t)=\mathrm{M}_{\mathrm{X}}(t) \quad \mathrm{M}_{\mathrm{Y}}(t)$ and $\mathrm{M}_{\mathrm{W}}(t)=\mathrm{M}_{\mathrm{X}}(t)+\mathrm{M}_{\mathrm{Y}}(t)$
(C) $\mathrm{M}_{\mathrm{Z}}(t)=\mathrm{M}_{\mathrm{X}}(t)+\mathrm{M}_{\mathrm{Y}}(t)$ and $\mathrm{M}_{\mathrm{W}}(t)=\mathrm{M}_{\mathrm{X}}(t) \mathrm{M}_{\mathrm{Y}}(t)$
(D) $\mathrm{M}_{\mathrm{Z}}(t)=\int \mathrm{M}_{\mathrm{Y}}(t+x) f_{\mathrm{X}}(x) d x$ and $\mathrm{M}_{\mathrm{W}}(t)=\mathrm{M}_{\mathrm{X}}(t) \mathrm{M}_{\mathrm{Y}}(t)$
108. Let X, Y be two random variables such that $\mathrm{E}[\mathrm{Y} / \mathrm{X}=x]=x^{2}$ and X is standard normal r.v. Then which of the following is false ?
(A) $\mathrm{E}[\mathrm{Y}]=1$
(B) $\operatorname{cov}(\mathrm{X}, \mathrm{Y})=0$
(C) $\operatorname{Corr}(\mathrm{X}, \mathrm{Y})>0$
(D) $\mathrm{E}\left[\mathrm{X}^{2} \mathrm{Y}\right]=3$
109. Suppose $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ are independent and identically distributed random variables each having exponential distribution with mean θ. Suppose Y_{1}, Y_{2}, Y_{3} is the corresponding order statistics. Then, $\mathrm{E}\left(\mathrm{Y}_{1}\right)$ is :
(A) $\frac{5 \theta}{6}$
(B) $\frac{\theta}{6}$
(C) $\frac{\theta}{3}$
(D) θ
110. The p th quantile of a standard normal random variable is ξ_{p}. Then, the p th quantile of a chi-square random variable with 1 degree of freedom is :
(A) ξ_{p}^{2}
(B) ξ_{1+p}^{2}
(C) $\xi_{(1+p) / 2}^{2}$
(D) 2ξ
111. Suppose (X, Y) is a two-dimensional random vector with range $(0, \infty) \times$ $\{1,2\}$, such that for any $\mathrm{A} \subset(0, \infty)$ and $y=1,2$,
$\mathrm{P}(\mathrm{X} \in \mathrm{A}, \mathrm{Y}=y)=\frac{1}{2} \int_{\mathrm{A}} y e^{-y x} d x$.
Then, which of the following statements is false?
(A) The distribution of (X, Y) is neither discrete nor absolutely continuous.
(B) The marginal distribution function of X is $\mathrm{F}(x)=1-$ (1/2) $\left[e^{-x}+2 e^{-2 x}\right], 0<x<\infty$.
(C) The random variable X is having an absolutely continuous distribution with density function (1/2) $\left[e^{-x}+2 e^{-2 x}\right]$.
(D) The marginal distribution of Y is $\mathrm{P}(\mathrm{Y}=y)=1 / 2, y=1,2$.
112. Suppose a random vector \underline{X} has normal distribution with mean vector μ and dispersion matrix V. Then which of the following has a chi-square distribution ?
(A) $(X-\underline{\mu})^{\prime} V(X-\underline{\mu})$
(B) $(\mathrm{X}-\underline{\mu})^{\prime} \mathrm{V}^{-1}(\mathrm{X}-\underline{\mu})$
(C) $\exp \left\{(\mathrm{X}-\underline{\mu})^{\prime} \mathrm{V}(\mathrm{X}-\underline{\mu})\right\}$
(D) $\exp \left\{(X-\underline{\mu})^{\prime} V^{-1}(X-\underline{\mu})\right\}$
113. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \ldots ., \mathrm{X}_{n}$ be a random sample from $\mathrm{N}(\theta, 1)$ where $\theta \subset[a, b]$ and $a<b$ are real numbers.

Then which of the following statements about the Maximum Likelihood Estimator (MLE) of θ is correct ?
(A) MLE of θ does not exist.
(B) MLE of θ is $\overline{\mathrm{X}}$.
(C) MLE of θ exists but it is not $\overline{\mathrm{X}}$.
(D) MLE of θ is an unbiased estimator of θ.
114. Let T_{1} be a $100 \cdot \alpha \%$ lower confidence limit for θ and T_{2} be a $100 \cdot \alpha \%$ upper confidence limit for θ. Let $\mathrm{P}\left[\mathrm{T}_{1}<\mathrm{T}_{2}\right]=1$ and $\frac{1}{2}<\alpha<1$. Then a $100(2 \alpha-1) \%$ confidence limit for θ is :
(A) $\left[\mathrm{T}_{1}, \mathrm{~T}_{2}\right.$)
(B) $\left[\frac{\mathrm{T}_{1}}{\alpha}, \frac{\mathrm{~T}_{2}}{\alpha}\right]$
(C) $\left[\frac{\mathrm{T}_{2}}{\alpha}, \frac{\mathrm{~T}_{1}}{\alpha}\right]$
(D) $\left[(2 \alpha-1) \mathrm{T}_{1}, \alpha \mathrm{~T}_{2}\right]$
115. Suppose X has a distribution with probability mass function that of discrete uniform on $\{-1,0,1\}$ under H_{0} and $\mathrm{U}(-1,1)$ under H_{1}. Then the test function

$$
\phi(x)= \begin{cases}1 & \text { if } x<0 \\ 0 & \text { if } x \geq 0\end{cases}
$$

has size :
(A) Not properly defined since H_{0} is discrete and H_{1} is continuous
(B) $1 / 3$
(C) 0
(D) $1 / 2$
116. Which of the following theorems is useful for obtaining uniformly minimum variance unbiased estimator of a parametric function?
(A) Neyman-Pearson theorem
(B) Basu's theorem
(C) Rao-Blackwell theorem
(D) Rao-Blackwell-LehmannScheffe theorem
117. Let $X_{1}, X_{2}, \ldots . . ., X_{n}$ be a random sample from uniform $(\theta, 5 \theta)$. Define $\mathrm{X}_{(1)}=\min \left\{\mathrm{X}_{1}, \ldots \ldots ., \mathrm{X}_{n}\right\}$ and $\mathrm{X}_{(n)}=$ $\max \left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \ldots, \mathrm{X}_{n}\right\}$. Maximum likelihood estimator of θ is :
(A) $\frac{\mathrm{X}_{(1)}}{5}$
(B) $\frac{\mathrm{X}_{(n)}}{5}$
(C) $\max \left\{\frac{\mathrm{X}_{(n)}}{5}, \mathrm{X}_{(1)}\right\}$
(D) $\min \left\{\frac{\mathrm{X}_{(n)}}{5}, \mathrm{X}_{(1)}\right\}$
118. Suppose $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}\right\}$ is a random sample from the distribution of X with mean μ and variance σ^{2}. The test statistic to test $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ against $H_{1}: \sigma^{2}>\sigma_{0}^{2}$ is given by $\mathrm{T}_{n}=\frac{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}{\sigma_{0}^{2}}$. Then the null distribution of T_{n} is :
(A) χ_{n-1}^{2} if X has normal distribution
(B) χ_{n-1}^{2} irrespective of distribution of X
(C) t distribution with $(n-1)$ degrees of freedom
(D) F distribution if X has normal distribution
119. X is a normal $\left(\mu, \sigma^{2}\right)$ random variable and a 95% confidence interval for μ is constructed based on a sample of size n. Suppose the length of the interval is L_{1}. If instead the variance of X is $\sigma_{1}^{2}>\sigma^{2}$ the length of the 95% confidence interval constructed using the same technique will be :
(A) equal to L_{1}
(B) smaller than L_{1}
(C) larger than L_{1}
(D) larger or smaller than L_{1}

JUN - 30219/II—A

120. Suppose $R_{1.23}$ is a multiple correlation coefficient between X_{1} and ($\mathrm{X}_{2}, \mathrm{X}_{3}$). Then which of the following statements cannot be true ?
(A) $\mathrm{R}_{1.23}$ is a maximum correlation between X_{1} and $\left(a \mathrm{X}_{2}+a_{3} \mathrm{X}_{3}\right)$ where a_{1} and a_{2} are any real numbers.
(B) $\mathrm{R}_{1.23}$ is a simple correlation between X_{1} and $\hat{\mathrm{X}}_{1}$, where $\hat{\mathrm{X}}_{1}$ is a line of best fit based on X_{2} and X_{3}.
(C) $\mathrm{R}_{1.23}=-0.4$
(D) $\mathrm{R}_{1.23}=0.4$
121. A frequency data is classified in 9 classes and Gamma distribution is fitted to it after estimating the parameters. If a χ^{2} goodness of fit test is to be used without combining the classes, the degrees of freedom associated with χ^{2} test are :
(A) 9
(B) 8
(C) 7
(D) 6
122. $\left(\mathrm{X}_{i}, \mathrm{Y}_{i}\right) i=1, \ldots \ldots, 9$ is a random sample from bivariate population where all X_{i} 's are distinct and all Y_{i} 's are distinct $i=1, \ldots \ldots$, 9 . If the number of concordance pairs is 9 , the Kendall's sample correlation coefficient is :
(A) $-1 / 4$
(B) $-1 / 2$
(C) $+1 / 2$
(D) $+1 / 4$
123. The following failure rates have been observed for certain type of light bulbs :

Week	1	2	3	4	5
Probabilities of failing by the end of week	0.10	0.25	0.50	0.80	1

If the cost of failure replacement is Rs. 20 per bulb and the cost of group replacement is Rs. 500, what is the optimal replacement interval ? (Assume that the group has 1000 bulbs.)
(A) One week
(B) Two weeks
(C) Three weeks
(D) Four weeks
124. The Economic Order Quantity (EOQ), primarily :
(A) minimizes the set-up cost
(B) reduces shortages
(C) balances carrying and ordering costs
(D) All of the above
125. Consider the two M/M/1 queuing systems Q_{1} and Q_{2}, where : Q_{1} : arrival rate λ, service rate μ Q_{2} : arrival rate λ^{2}, service rate μ^{2}. It is known that $\lambda<\mu$. Let $\mathrm{L}_{s}^{(i)}$ be the number of customers in the system in the equilibrium state, $i=1,2$. Then :
(A) $\mathrm{L}_{s}^{(1)}<\mathrm{L}_{s}^{(2)}$
(B) $\mathrm{L}_{s}^{(1)}=\mathrm{L}_{s}^{(2)}$
(C) $\mathrm{L}_{s}^{(1)}>\mathrm{L}_{s}^{(2)}$
(D) The two cannot be compared
126. Consider a finite population of $\mathrm{N}=2 n$ units. A sample of size 2 is drawn as follows :
(i) The population is randomly divided into 2 groups each of size n.
(ii) From each of the two groups as obtained above, one unit is drawn with probability $1 / n$.

These two units form the sample. Then, the correct statement is :
(A) The sample is a stratified sample with two strata.
(B) The sample mean is not an unbiased estimator of the population mean.
(C) The sample is a SRSWOR of size 2.
(D) The sample is not randomly obtained.
127. Consider the following sampling designs : a stratified sample scheme with SRSWOR within each stratum and a SRSWOR. Both have the same sample size. We are interested in estimating the population mean. Let $V_{\text {prop }}^{2}$ and $V_{S R S}^{2}$ be the corresponding variances of the usual estimators of the population mean. Then,
(A) $\mathrm{V}_{\text {prop }}^{2}<\mathrm{V}_{\mathrm{SRS}}^{2}$
(B) $\mathrm{V}_{\text {prop }}^{2}=\mathrm{V}_{\mathrm{SRS}}^{2}$
(C) $\mathrm{V}_{\text {prop }}^{2}>\mathrm{V}_{\mathrm{SRS}}^{2}$
(D) $\mathrm{V}_{\text {prop }}^{2} \leq \mathrm{V}_{\mathrm{SRS}}^{2}$
128. A completely randomized design has n plots and 10 treatments. While calculating the F-ratio for assessing equality of treatment effects, the experimenter forgot to divide the numerator and denominator sums of squares by corresponding degrees of freedom. But the statistician said that the calculated F-ratio is correct.
Hence n is equal to :
(A) 10
(B) 20
(C) 30
(D) 19
129. Under completely randomized design with model :

$$
\begin{array}{rl}
\mathrm{E} y_{i j}=\mu+\alpha_{i}+\epsilon_{i j} & i=1, \ldots \ldots, p \\
& j=1, \ldots \ldots, n_{i} \\
\epsilon_{i j} \sim \mathrm{~N}\left(0, \sigma^{2}\right) \text { and } \\
\text { independently } \quad \text { istributed, a }
\end{array}
$$ parametric function $c \mu+\sum_{i=1}^{p} d_{i} \alpha_{i}$ where c and $d_{1}, \ldots \ldots ., d_{p}$ are known constants is estimable if and only if:

(A) $c=0$
(B) $\sum_{i=1}^{p} d_{i}=0, c>0$
(C) $c=0, \quad \sum_{i=1}^{p} d_{i}>0$
(D) $\sum_{i=1}^{p} d_{i}=c$
130. Under a Latin-Square design with V treatments, which of the following statements is not correct?
(A) It can accommodate three sources of heterogeneity
(B) It requires exactly V^{3} experimental units
(C) The elementary (pairwise) contrasts among column effects, among row effects and among treatment effects are all estimated with common variance
(D) The degrees of freedom associated with error are equal to $(\mathrm{V}-2)(\mathrm{V}-1)$
131. Let \mathbf{F} be a σ-field of subsets of Ω.

Let μ be a non-negative, finitely
additive set function on \mathbf{F}.

Suppose $\left\{\mathrm{A}_{n}\right\}$ is a sequence of disjoint sets such that $\bigcup_{n=1}^{\infty} \mathrm{A}_{n} \in \mathbf{F}$.

Then which of the following statements is always correct ?
(A) $\sum_{n=1}^{\infty} \mu\left(\mathrm{A}_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} \mathrm{A}_{n}\right)$
(B) $\sum_{n=1}^{\infty} \mu\left(\mathrm{A}_{n}\right) \geq \mu\left(\bigcup_{n=1}^{\infty} \mathrm{A}_{n}\right)$
(C) $\sum_{n=1}^{\infty} \mu\left(\mathrm{A}_{n}^{c}\right)=\mu\left(\bigcup_{n=1}^{\infty} \mathrm{A}_{n}^{c}\right)$
(D) $\sum_{n=1}^{\infty} \mu\left(\mathrm{A}_{n}\right) \leq \mu\left(\bigcup_{n=1}^{\infty} \mathrm{A}_{n}\right)$
132. Let $(\Omega, \mathbf{F}, \mu)$ be a measure space and let $f_{n}: \Omega \rightarrow \overline{\mathrm{R}}$, be a sequence of extended Borel measurable functions. Suppose $\left|f_{n}\right| \leq 100$, $\forall n=1,2, \ldots \ldots .$, and $\lim _{n \rightarrow \infty} f_{n}=f$ a.e.
μ. Then, which of the following statements is false?
(A) $\int_{\Omega}|f| d \mu \leq \liminf _{n} \int\left|f_{n}\right| d \mu$
(B) $\lim _{n \rightarrow \infty} \int\left|f_{n}\right| d \mu=\int|f| d \mu$
(C) $\int \lim \sup _{n \rightarrow \infty}\left|f_{n}\right| d \mu=\int|f| d \mu$
(D) $\lim _{n \rightarrow \infty} \int \sum_{k=1}^{n}\left|f_{k}\right| d \mu=$

$$
\int \sum_{k=1}^{\infty}\left|f_{k}\right| d \mu
$$

133. Let $\Omega=\{1,2, \ldots . . .$.$\} the set of positive$ integers and $\mathbf{F}=\{\phi,\{1\},\{2\},\{1,2\}$, $\left.\{1\}^{c},\{2\}^{c},\{1,2\}^{c}, \Omega\right\}$,
where A^{c} denotes the complement of the set A. Let $\mathrm{R}=(-\infty, \infty)$ and \mathbf{B} the Borel σ-field of R .
Which of the following functions f from (Ω, \mathbf{F}) to (R, \mathbf{B}) is measurable ?
(A) $f(k)=k, k=1,2, \ldots .$.
(B) $f(1)=1, f(2)=2, f(3)=1$, $f(k)=0, k \geq 4$
(C) $f(k)=1$ if k is odd and $f(k)=2$ if k is even
(D) $f(1)=2, f(2)=3, f(k)=10$, $k \geq 3$
134. Let $\left\{\mathrm{X}_{n}, n \geq 1\right\}$ be a sequence of independent identically distributed random variables.
Define $\mathrm{W}_{n}=\cos \left(\mathrm{X}_{n}^{2}\right)$.
Then which of the following is always true ?
(A) Both the sequences $\left\{\mathrm{X}_{n}\right\}$ and $\left\{\mathrm{W}_{n}\right\}$ satisfy the strong law of large numbers.
(B) The sequence $\left\{\mathrm{X}_{n}\right\}$ satisfies the strong law of large numbers.
(C) Neither the sequence $\left\{\mathrm{X}_{n}\right\}$ nor $\left\{\mathrm{W}_{n}\right\}$ satisfy the strong law of large numbers.
(D) The sequence $\left\{\mathrm{W}_{n}\right\}$ satisfies the strong law of large numbers.
135. Let $\left\{\mathrm{X}_{n}, n \geq 1\right\}$ be a sequence of independent identically distributed random variables with finite (nonzero) fourth moment.

Let $\mathrm{Y}_{n}=\left(\mathrm{X}_{1}^{2}+\ldots \ldots \ldots+\mathrm{X}_{n}^{2}\right) / n$
Which of the following is true ?
As $n \rightarrow \infty, \sqrt{n}\left(\mathrm{Y}_{n}-\mathrm{E}\left[\mathrm{X}_{1}^{2}\right]\right)$.
(A) Converges in distribution to a chi-square r.v. with 1 degree of freedom.
(B) Converges in distribution to a standard normal r.v.
(C) Converges in distribution to a normal r.v.
(D) Converges to a r.v. degenerate at zero.
136. The joint density of X and Y is given by :
$f(x, y)= \begin{cases}\frac{y}{2} e^{-x y}, & 0<x<\infty, 0<y<2 \\ 0, & \text { otherwise }\end{cases}$

Consider the statements :
(I) The conditional density of X given $\mathrm{Y}=1$,
$f(x \mid 1)= \begin{cases}\frac{1}{2} e^{-x}, & 0<x<\infty \\ 0, & \text { otherwise }\end{cases}$
(II) $\mathrm{E}[\mathrm{X} \mid \mathrm{Y}=1]=1$
(III) $\mathrm{P}[\mathrm{X} \leq 2 \mid \mathrm{Y}=1]=1-e^{-2}$

Which of the above statements are true ?
(A) All the three
(B) (I) and (II) only
(C) (I) and (III) only
(D) (II) and (III) only
137. Suppose $\left\{\mathrm{X}_{n}\right\}$ is a sequence of random variables and X is a random variable such that $\mathrm{P}\left[\lim _{n \rightarrow \infty} \mathrm{X}_{n}=\mathrm{X}\right]=1$.

Then which of the following may not hold ?
(A) $\lim _{n \rightarrow \infty} \mathrm{P}\left[\left|\mathrm{X}_{n}-\mathrm{X}\right|>1 / 2\right]=0$
(B) $\mathrm{P}\left[\lim _{n \rightarrow \infty} \exp \left(\mathrm{X}_{n}\right)=\exp (\mathrm{X})\right]=1$
(C) $\lim _{n \rightarrow \infty} \mathrm{E}\left[\left|\mathrm{X}_{n}-\mathrm{X}\right|^{2}\right]=0$
(D) $\lim _{n \rightarrow \infty} \mathrm{P}\left[\mathrm{X}_{n} \leq x\right]=\mathrm{P}[\mathrm{X} \leq x]$ at all continuity points x of $\mathrm{P}[\mathrm{X} \leq x]$
138. Let $\left\{\mathrm{X}_{n}\right\}$ be a sequence of independent random variables.
Define $\mathrm{A}_{n}=\left[\mathrm{X}_{n} \geq n^{-1}\right]$.
Let $\mathrm{E}=\bigcap_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \mathrm{A}_{k}$
Then which of the following is always correct?
(A) $\mathrm{P}(\mathrm{E})=0$
(B) $\mathrm{P}(\mathrm{E})$ is either 0 or 1
(C) $\mathrm{P}(\mathrm{E})=1$
(D) $0<\mathrm{P}(\mathrm{E})<1$

JUN - 30219/II—A

139. Suppose $\left\{\mathrm{X}_{n}\right\}$ is a \mathbf{F}_{n}-martingale and $\mathrm{E}\left[\mathrm{X}_{n}^{2}\right]<\infty$ for all n.

Which of the following is not always true ?
(A) $\mathrm{E}\left[\mathrm{X}_{n}\right]$ is a constant for all n.
(B) $\left\{\mathrm{X}_{n}^{2}\right\}$ is not a \mathbf{F}_{n}-martingale
(C) $\mathrm{W}_{n}=\sum_{k=1}^{n} \mathrm{X}_{k}$ is not a \mathbf{F}_{n} martingale
(D) $\mathrm{E}\left[\mathrm{X}_{n}^{2}\right]$ is constant for all n.
140. Suppose a distribution function $\mathrm{F}: \mathbf{R} \rightarrow[0,1]$ of a random variable X is as follows :
$\mathrm{F}(x)=\left\{\begin{array}{ccc}0, & \text { if } & x<0, \\ 1 / 4, & \text { if } & 0 \leq x<1, \\ 1 / 2, & \text { if } & 1 \leq x<2, \\ 1 / 2+(x-2) / 2, & \text { if } & 2 \leq x<3, \\ 1, & \text { if } & x \geq 3 .\end{array}\right.$
Then $\mathrm{E}(\mathrm{X})$ is :
(A) $5 / 6$
(B) $2 / 3$
(C) $3 / 2$
(D) $7 / 6$
141. Suppose a distribution function of random variable X is :

$$
\mathrm{F}(x)=\left\{\begin{array}{ccc}
0, & \text { if } & x<0 \\
x / 2, & \text { if } & 0 \leq x<1 \\
1, & \text { if } & x \geq 1
\end{array}\right.
$$

Then, which of the following statements is not correct ?
(A) $\mathrm{P}(-1<\mathrm{X} \leq 1 / 2)=1 / 4$
(B) $\mathrm{E}(\mathrm{X})=1 / 6$
(C) $\mathrm{E}(\mathrm{X})=3 / 4$
(D) $\mathrm{P}(\mathrm{X}=1)=1 / 2$
142. Suppose X is an arbitrary random variable and $g(\cdot)$ is a non-negative Borel function on R. If $g(\cdot)$ is even and non-decreasing on $[0, \infty)$, then for every $a>0$.
(A) $\mathrm{P}[|\mathrm{X}| \leq a] \leq \mathrm{E}(g(x)) / g(a)$
(B) $\mathrm{P}[|\mathrm{X}| \leq a] \geq \mathrm{E}(g(x)) / g(a)$
(C) $\mathrm{P}[|\mathrm{X}| \geq a] \leq \mathrm{E}(g(x)) / g(a)$
(D) $\mathrm{P}[|\mathrm{X}| \geq a] \geq \mathrm{E}(g(x)) / g(a)$
143. Suppose X follows Cauchy distribution with location parameter μ and scale σ. Then the characteristic function of X is :
(A) $\exp \{i t \mu-\sigma|t|\}$
(B) $\exp \left\{i t \mu-\frac{1}{2} \sigma^{2} t^{2}\right\}$
(C) $\exp \{i t \mu-\sigma t\}$
(D) $\exp \left\{\sigma^{2}-i(t-\mu)^{2}\right\}$
144. Suppose that X and Y are independent random variables having Poisson distribution with means λ_{1} and λ_{2} respectively. Then, the conditional distribution of X given $\mathrm{X}+\mathrm{Y}$ and $\mathrm{X}+\mathrm{Y}$ given X are respectively :
(A) Binomial $\left(x+y ; \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)$ and Poisson with parameter λ_{2}; but taking values $\mathrm{X},(\mathrm{X}+1), \ldots \ldots$,
(B) Negative binomial with parameters $\left(x+y ; \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)$ and Poisson with parameter $\lambda_{1}+\lambda_{2}$.
(C) Poisson with mean $\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$ and Poisson with parameter λ_{1}
(D) Geometric with parameter $\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$ and Poisson with parameter $\lambda-1+\lambda_{2}$, but taking values $X,(X+1), \ldots . .$. ,
145. Consider a statistical decision problem with $\Theta=\left\{\theta_{1}, \theta_{2}\right\}$ and $\mathrm{D}=\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}$. The risk functions are given by :

θ / d	d_{1}	d_{2}	d_{3}	d_{4}
θ_{1}	4	1	5	2
θ_{2}	1	2	3	3

Then :
(A) d_{1} is minimax
(B) d_{2} is minimax
(C) d_{3} is minimax
(D) d_{4} is minimax
146. Let X be a Poisson random variable with parameter $\theta=\mathrm{E}(\mathrm{X})$, $0<\theta<\infty$. Consider the Bayesian procedure for estimation of θ. Then, the conjugate prior for θ :
(A) $\pi(\theta) \propto e^{-\theta}$
(B) $\pi(\theta) \alpha \theta^{\alpha-1} e^{-\theta^{\beta}} \alpha, \beta>0$
(C) $\pi(\theta) \alpha e^{-\alpha \theta} \theta^{\lambda-1} \alpha, \lambda>0$
(D) $\pi(\theta) \propto \frac{1}{1+\theta^{2}}$

JUN - 30219/II—A

147. Suppose X_{1} has exponential distribution with mean θ, X_{2} has exponential distribution with mean $\theta / 2$ and X_{1} and X_{2} are independent. Which of the following statements is not correct ?
(A) $\mathrm{X}_{1}+\mathrm{X}_{2}$ is sufficient for θ
(B) $\mathrm{X}_{1}+2 \mathrm{X}_{2}$ is sufficient for θ
(C) $\mathrm{X}_{1}+2 \mathrm{X}_{2}$ is complete for θ
(D) $\left(\mathrm{X}_{1}+2 \mathrm{X}_{2}\right) / 2$ is unbiased for θ
148. Suppose $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . . ., \mathrm{X}_{n}\right\}$ is a random sample from Poisson $P(\theta)$ distribution, $\theta>0$. Which of the following statements is not correct?
(A) Sample mean $\overline{\mathrm{X}}_{n}$ is unbiased for θ
(B) Sample variance S_{n}^{2} is unbiased for θ
(C) $0.3 \overline{\mathrm{X}}_{n}+0.7 \mathrm{~S}_{n}^{2}$ is unbiased for θ
(D) $\overline{\mathrm{X}}_{n}^{2} / \mathrm{S}_{n}^{2}$ is unbiased for θ
149. Suppose $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . ., \mathrm{X}_{n}\right\}$ is a random sample from $U(\theta, \theta+1)$. Which of the following statistic is not a maximum likelihood estimator of θ ?
(A) $\mathrm{X}_{(1)}$
(B) $\mathrm{X}_{(n)}-1$
(C) $\mathrm{X}_{(n)}$
(D) $\frac{\mathrm{X}_{(1)}+\mathrm{X}_{(n)}}{2}-0.5$
150. The distributions of X under H_{0} and H_{1} are given by :

x	1	2	3	4
H_{0}	0.25	0.25	0.25	0.25
H_{1}	0.17	0.17	0.17	0.32

The most powerful test at level $\alpha=0.05$ is given by :
(A) reject H_{0} if $\mathrm{X}=4$
(B) reject H_{0} with probability 0.25 if $\mathrm{X}=4$
(C) reject H_{0} with probability 0.2 if $\mathrm{X}=4$
(D) reject H_{0} with probability 0.32 if $\mathrm{X}=4$
151. Suppose $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . ., \mathrm{X}_{n}\right\}$ are independent and identically distributed random variables with mean μ and variance σ^{2}. Suppose $\mathrm{S}_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathrm{X}_{i}-\overline{\mathrm{X}}_{n}\right)^{2}$. Then which of the following statements is not true ?
(A) S_{n} is unbiased for σ
(B) S_{n}^{2} is unbiased for σ^{2}
(C) S_{n} is consistent for σ
(D) S_{n}^{2} is consistent for σ^{2}
152. Suppose $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \ldots, \mathrm{X}_{n}\right\}$ are independent and identically distributed random variables with mean zero and variance σ^{2}. Then the asymptotic distribution of

$$
\mathrm{T}_{n}=\frac{\sqrt{n} \sum_{i=1}^{n} \mathrm{X}_{i}}{\sum_{i=1}^{n} \mathrm{X}_{i}^{2}}
$$

is :
(A) t distribution
(B) $\mathrm{N}(0,1)$ distribution
(C) $\mathrm{N}\left(0,1 / \sigma^{2}\right)$ distribution
(D) degenerate at 0
153. Let $S=S\left(X_{1}, X_{2}, \ldots . ., X_{n}\right)$ be an unbiased estimator of the parametric functional $\theta(F)$ based on a random sample $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \ldots . \mathrm{X}_{n}$ from F . Suppose U is the U -statistics corresponding to S . Then, which of the following statements is true?
(A) $\mathrm{E}_{\mathrm{F}}(\mathrm{U})>\mathrm{E}_{\mathrm{F}}(\mathrm{S})$
(B) $\mathrm{E}_{\mathrm{F}}(\mathrm{U})<\mathrm{E}_{\mathrm{F}}(\mathrm{S})$
(C) $\mathrm{V}_{\mathrm{F}}(\mathrm{U}) \leq \mathrm{V}_{\mathrm{F}}(\mathrm{S})$
(D) $\mathrm{V}_{\mathrm{F}}(\mathrm{U})>\mathrm{V}_{\mathrm{F}}(\mathrm{S})$
154. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . . ., \mathrm{X}_{n}$ be independent Poisson (λ) random variables and $\mathrm{T}_{1}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{I}\left(\mathrm{X}_{i}=0\right), \quad \mathrm{T}_{2}=e^{-\overline{\mathrm{X}}}$

Then, the asymptotic relative efficiency $\operatorname{ARE}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ is :
(A) $e^{-\lambda}$
(B) $\left(e^{\lambda}-1\right)$
(C) $\left(e^{\lambda}-1\right) /(\lambda-1)$
(D) $\left(e^{\lambda}+1\right)$
155. Let T_{n} be a consistent estimator of θ such that $\sqrt{n}\left(\mathrm{~T}_{n}-\theta\right) \rightarrow \mathrm{N}(0,1)$ in distribution and $\mathrm{T}_{n} \xrightarrow{p} \theta$. Let T_{n}^{*} be an estimator of θ be given by :

$$
\mathrm{T}_{n}^{*}=\mathrm{T}_{n}+\frac{c}{\sqrt{n}} \quad c>0
$$

Then :
(A) T_{n}^{*} is not a consistent estimator of θ
(B) $\sqrt{n}\left(\mathrm{~T}_{n}^{*}-\theta\right) \xrightarrow{\mathrm{D}}$ a normal
distribution
(C) T_{n}^{*} is consistent for θ
(D) $\mathrm{E}\left(\mathrm{T}_{n}^{*}-\theta\right)^{2} \rightarrow 0$ as $n \rightarrow \infty$
156. Let $\mathrm{X}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right) \sim \mathrm{N}_{4}(\underline{0}, \Sigma)$ where

$$
\Sigma=\left[\begin{array}{llll}
1 & \rho & \rho & \rho \\
\rho & 1 & \rho & \rho \\
\rho & \rho & 1 & \rho \\
\rho & \rho & \rho & 1
\end{array}\right]
$$

is positive definite.

Then which of the following statements is true?
(A) $\mathrm{X}_{1}+\mathrm{X}_{2}, \mathrm{X}_{2}+\mathrm{X}_{3}, \mathrm{X}_{3}+\mathrm{X}_{4}$ have
all same distributions
(B) $\frac{\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)^{2}}{\left(\mathrm{X}_{1}-\mathrm{X}_{3}\right)^{2}} \sim \mathrm{~F}_{11}$
(C) $\frac{\left(\mathrm{X}_{1}-\mathrm{X}_{3}\right)^{2}+\left(\mathrm{X}_{2}-\mathrm{X}_{4}\right)^{2}}{2} \sim \chi_{2}^{2}$
(D) $\Sigma X_{i} \sim N(0,4)$

JUN - 30219/II—A

157. Let $X_{1} \sim N(0,1)$ and

$$
X_{2}=\left\{\begin{array}{cc}
-X_{1} & -3 \leq X_{1} \leq 3 \\
\mathrm{X}_{1} & \text { otherwise }
\end{array}\right.
$$

Then which of the following statements is correct?
(A) X_{1} and X_{2} are negatively correlated
(B) X_{1} and X_{2} are positively correlated
(C) X_{1} and X_{2} are perfectly correlated
(D) X_{1} and X_{2} have joint normal distribution
158. Let $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \sim \mathrm{N}_{2}(\mu, \Sigma)$ where Σ is a +ve definite matrix. Then which of the following has a singular normal distribution where $\mathrm{X}_{3}=\mathrm{X}_{1}-2 \mathrm{X}_{2}$?
(A) $\mathrm{X}_{1}+\mathrm{X}_{3}, \mathrm{X}_{1}-\mathrm{X}_{2}$
(B) $\mathrm{X}_{1}-\mathrm{X}_{3}, \mathrm{X}_{2}-\mathrm{X}_{3}$
(C) $\mathrm{X}_{1}, \mathrm{X}_{3}$
(D) $\mathrm{X}_{2}, \mathrm{X}_{3}$
159. Let $\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots \ldots ., \mathrm{U}_{n}$ be independent identically distributed random vectors with common distribution $\mathrm{N}_{p}(0, \Sigma), \Sigma=\left(\left(\sigma_{i j}\right)\right)$ is a + ve definite matrix. Let $\mathrm{S}=\left(\left(\mathrm{S}_{i j}\right)\right)=\sum_{j=1}^{n} \mathrm{U}_{j} \mathrm{U}_{j}^{\prime}$. Then which of the following statements is not true ?
(A) $\sum_{i=1}^{n} \mathrm{~S}_{i i} \sim$ constant χ_{n}^{2}
(B) $\mathrm{S}_{11}+\mathrm{S}_{22} \sim$ constant χ_{2}^{2}
(C) $\mathrm{S}_{11} \sim$ constant χ_{1}^{2}
(D) $\mathrm{S}_{11}+\mathrm{S}_{12} \sim$ constant χ_{2}^{2}
160. Let $\phi_{\mathrm{X}}(\underline{t})$ be the characteristic function of $\underline{X} \sim N_{3}(\underline{\mu}, \Sigma)$. Then $\mathrm{EX}_{1} \mathrm{X}_{2}^{2} \mathrm{X}_{3}$ is given by :
(A) $\left.\frac{(-1)^{4} \partial^{4} \phi_{\underline{\mathbf{x}}}(\underline{t})}{\partial t_{1} \partial t_{2}^{2} \partial t_{3}}\right|_{\underline{t}=\underline{0}}$
(B) $\left.\frac{(-1)^{3} \partial^{3} \phi_{\underline{\mathrm{X}}}(\underline{t})}{\partial t_{1} \partial t_{2} \partial t_{3}}\right|_{t_{1}=1, t_{2}=2, t_{3}=1}$
(C) $\left.\frac{(-1)^{3} \partial^{4} \phi_{\mathbf{X}}(\underline{t})}{\partial t_{1} \partial t_{2}^{2} \partial t_{3}}\right|_{t_{1}=1, t_{2}=2, t_{3}=1}$
(D) $\left.\frac{\partial^{4} \phi_{\underline{\mathbf{X}}}(\underline{t})}{\partial t_{1} \partial t_{2}^{2} \partial t_{3}}\right|_{t_{1}=1, t_{2}=2, t_{3}=1}$
161. $\mathrm{Y}_{1}, \mathrm{Y}_{2}$ and Y_{3} are three uncorrelated random variables with common variance σ^{2}. Further $E\left(Y_{1}\right)=\theta_{2}-\theta_{1}$, $\mathrm{E}\left(\mathrm{Y}_{2}\right)=\mathrm{E}\left(\mathrm{Y}_{3}\right)=\theta_{2}+\theta_{3}$. Then :
(A) $\theta_{1}-\theta_{2}$ is not estimable
(B) $\theta_{1}+\theta_{2}$ is not estimable
(C) $\theta_{1}+\theta_{3}$ is not estimable
(D) $\theta_{2}+\theta_{3}$ is not estimable
162. In a simple linear regression of Y on X based on n observations. The fitted values of Y_{i} 's are Y_{i}^{n}, $i=1 \ldots . n$ respectively. Then :

$$
\sum_{i=1}^{n} \mathrm{Y}_{i}=\sum_{i=1}^{n} \mathrm{Y}_{i}^{n}
$$

(A) always
(B) only if the regression equation is $Y=B_{0}+B_{1} X+\varepsilon$
(C) if and only if the regression equation is $\mathrm{Y}=\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}+\varepsilon$
(D) if the regression equation is $Y=B_{0}+B_{1} X+\varepsilon$
163. A least squares regression fit :
(A) may be used to predict the value of Y if the corresponding values of regressor X are given
(B) indicates a cause-effect relationship between response variable Y and regressors
(C) can be determined only if a satisfactory relationship exists between response variable Y and regression
(D) all the above statements are true
164. In a multiple linear regression model $\mathrm{Y}_{i}=\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}_{i 1}+\ldots \ldots+\mathrm{B}_{p} \mathrm{X}_{i p}$ $+\varepsilon_{i}$ with $\mathrm{E}\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$, $i=1, \ldots ., n$.
(A) Mean regression Sum of Squares (SS) is an unbiased estimator of σ^{2}
(B) Mean regression SS and Mean Error SS are unbiased and Mean total SS is a biased estimator of σ^{2}
(C) Mean total SS is unbiased estimator of σ^{2}
(D) Mean total SS and Mean regression SS are unbiased estimators of σ^{2}
165. Suppose $Y_{i}=B_{0}+B_{1}\left(x_{i}-2\right)+\varepsilon_{i}$, $\mathrm{E}\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$ and where $x_{i}=i, i=1,2,3$. The Best Linear Unbiased estimators of B_{0} and B_{1}.
(A) do not exist
(B) exist and are uncorrelated with each other
(C) exist and are independent of each other
(D) exist and are positively correlated with each other
166. A probability proportional to size (PPS) without replacement sample of size 2 is to be drawn from a population of $\mathrm{N}=3$ units. Let $z_{1}=1 / 4, z_{2}=1 / 4, z_{3}=1 / 2$. The i-th unit is selected with probability $z_{i}, i=1,2,3$. If the first unit selected is i, then the j-th unit is selected for inclusion in the sample with probability $z_{j} /\left(1-z_{i}\right), j \neq i$. Then, the probability that the third unit is the population is included in the sample is given by :
(A) 1
(B) $1 / 2$
(C) $5 / 6$
(D) $2 / 3$
167. Let $r=\bar{y} / \bar{x}$ denote the ratio of the sample means of the variable y and of the auxiliary variable x. The sample is a SRSWOR sample of size n. Let $f=n / \mathrm{N}$ and $\overline{\mathrm{X}}$ be the population mean of the auxiliary variable x. Let $\mathrm{R}=\overline{\mathrm{Y}} / \overline{\mathrm{X}}$. By considering $\operatorname{Cov}(r, \bar{x})$, the bias of r, as an estimator of R, is given by :
(A) $\frac{1-f}{n}$
(B) $\frac{1-f}{n \mathrm{R}}$
(C) $\frac{1-f}{n} \mathrm{R}$
(D) $-\frac{1}{\mathrm{X}} \operatorname{Cov}(r, \bar{x})$

JUN - 30219/II—A

168. Let us consider the following methods of estimation, all based on SRSWOR of the same sample size. I Sample mean II Ratio estimator III Regression estimator. Let the corresponding variances be denoted by $\mathrm{V}_{1}^{2}, \mathrm{~V}_{2}^{2}$ and V_{3}^{2}. Assuming that the sample size is sufficiently large, we have :
(A) $\mathrm{V}_{1}^{2} \leq \mathrm{V}_{3}^{2} \leq \mathrm{V}_{2}^{2}$
(B) $\mathrm{V}_{3}^{2} \leq \mathrm{V}_{2}^{2} \leq \mathrm{V}_{1}^{2}$
(C) $\mathrm{V}_{3}^{2} \leq \mathrm{V}_{1}^{2} \leq \mathrm{V}_{2}^{2}$
(D) None of the above
169. The incidence matrix of a block design is given by :

$$
\mathrm{N}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Hence the design is :
(A) connected and not orthogonal
(B) not connected and not orthogonal
(C) not connected and orthogonal
(D) connected and orthogonal
170. Suppose N is the incidence matrix of a BIBD with parameters $(v, b, r$, $k, \lambda)$, then :
(A) $\operatorname{rank}\left(\mathrm{NN}^{\prime}\right)=v$
(B) $\operatorname{rank}\left(\mathrm{NN}^{\prime}\right)=b$
(C) $\operatorname{rank}\left(\mathrm{NN}^{\prime}\right)=v-1$
(D) rank $\left(\mathrm{NN}^{\prime}\right)=b-1$
171. 8 treatments are arranged in a rowcolumn design as given below :

1	2	3	4
5	6	7	8
3	8	1	6
7	4	5	2

Hence it is a :
(A) Latin Square Design
(B) Youden Square Design
(C) Quasi-Latin Square Design
(D) Incomplete Block Design
172. For a 2^{4} factorial design with four treatments A, B, C, D each at two levels, the treatment combinations were allotted in two blocks of 8 plots each as below :

Block I	1	a	c	$a c$	$b d$	$a b d$	$b c d$	$a b c d$
Block II	b	$a b$	$b c$	$a b c$	d	$a d$	$c d$	$a c d$

Hence the treatment combination which is confounded is :
(A) ABCD
(B) ACD
(C) BCD
(D) ABD
173. Let $\left\{\mathrm{X}_{t}\right\}$ be a time series defined as $\mathrm{X}_{t}=\mathrm{A} \sin (\omega t+\mathrm{B})$, where $\mathrm{E}(\mathrm{A})=0$, $\operatorname{Var}(\mathrm{A})=1, \mathrm{~B} \sim \operatorname{Uniform}(-\pi, \pi)$ and A and B are independent. Then, $h-$ lag covariance function $r(h)$ is :
(A) $\frac{1}{2} \cos (\omega h)$
(B) $\frac{1}{2} \sin (\omega h)$
(C) $\frac{1}{2} \cos (\omega h+4)$
(D) $\frac{1}{2} \sin (\omega h+2)$
174. Given a time series $\mathrm{X}_{t}=\mathrm{X}_{t-1}+\mathrm{Z}_{t}$, where X_{0} is distributed like Z_{t} and Z_{t} 's are iid $\mathrm{N}\left(0, \sigma^{2}\right)$. Which of the following statements is true ?
(A) $\mathrm{V}\left(\mathrm{X}_{t} \mid \sqrt{t}\right)=1$
(B) $\left\{\mathrm{X}_{t}\right\}$ is stationary
(C) $\mathrm{E}\left(\mathrm{X}_{t}\right)=t$
(D) $\operatorname{Cov}\left(\mathrm{X}_{t}, \mathrm{X}_{s}\right)=\sigma|t-s|$
175. What will be the variance of $\left(\mathrm{X}_{1}+\right.$ $\left.\mathrm{X}_{2}+\mathrm{X}_{3}\right) / 3$, if $\mathrm{X}_{1}, \mathrm{X}_{2}$ and X_{3} are from an $\operatorname{AR}(1)$ series $X_{t}=1 / 2 X_{t-1}+Z_{t}$, where Z_{t} ~ iid normal $(0,1)$?
(A) $9 / 18$
(B) $8 / 18$
(C) $16 / 18$
(D) $13 / 18$
176. Consider a Markov chain on $S=\{1,2,3,4\}$ with the transition probability matrix given by :

Then :
(A) $\lim _{n \rightarrow \infty} p_{i j}^{(n)}$ exists for all (i, j) and the limit is independent of i
(B) $\lim _{n \rightarrow \infty} p_{i j}^{(n)}$ does not exist for all (i, j) and there is a unique stationary distribution
(C) there does not exist any stationary distribution
(D) there exist infinitely many stationary distributions
177. Let $\{\mathrm{X}(t), t \geq 0\}$ be a timehomogeneous Poisson process with rate λ. Then :
(A) $\operatorname{Cov}(\mathrm{X}(s), \mathrm{X}(t))=\frac{\min (s, t)}{\sqrt{s t}}$
(B) $\operatorname{Cov}(\mathrm{X}(s), \mathrm{X}(t))=\frac{\lambda}{\lambda+1}$
(C) $\operatorname{Cov}(\mathrm{X}(s), \mathrm{X}(t))=\frac{\max (s, t)}{\sqrt{s, t}}$
(D) $\operatorname{Cov}(\mathrm{X}(s), \mathrm{X}(t))=\frac{\min (s, t)}{s t}$
178. Consider a Markov chain on $S=\{0,1,2$, \qquad \}. The transition probabilities are given by :

$$
p_{00}=\frac{1}{2} \quad p_{01}=\frac{1}{2}
$$

and for $i \geq 1$,

$$
p_{i i-1}=\frac{1}{2} \quad p_{i i+1}=\frac{1}{2}
$$

Then :
(A) all states are persistent non-null
(B) there exists a persistent nonnull state
(C) there exists a unique stationary distribution
(D) all states are transient or persistent null
179. Consider a branching process $\left\{\mathrm{X}_{n}, n \geq 0\right\}$. Let $\mathrm{X}_{0}=1$ and assume that $\mathrm{E}\left(\sum_{\theta}^{\infty} \mathrm{X}_{n}\right)<\infty$. Then, the extinction probability :
(A) equals 0
(B) lies in $(0,1)$
(C) does not exist
(D) 1
180. Death rates are standardised to :
(A) obtain an estimate of ideal rates
(B) eliminate the differential influence of one or more variables
(C) adjust them with registration of deaths
(D) obtain correct estimate of actual rates
181. Which one of the following population growth model is not specified correctly ?
(A) $\mathrm{P}_{t}=\mathrm{P}_{0}(1+r t)$
(B) $\mathrm{P}_{t}=\mathrm{P}_{0} e^{r t}$
(C) $\mathrm{P}_{t}=\mathrm{K} /\left(1+e^{a+b t}\right)$
(D) $\mathrm{P}_{t}=\mathrm{BC}^{t}$
182. The failure time of a component is exponentially distributed with mean life 200 hours. The design of the component is modified after which the mean life has increased to 400 hours. What is the amount of increase in reliability at 800 hours ? (Let $a=e^{-2}$.)
(A) a
(B) a^{2}
(C) $a(1-\alpha)$
(D) $(1-a) / a$
183. If the failure rate function r of a component is $r(t)=\frac{t}{1+t}, t \geq 0$; then its survival function is :
(A) e^{-t}
(B) $t e^{-t}$
(C) $1-e^{-t}$
(D) $(1+t) e^{-t}$
184. If the lead time is m periods and usage rate is u, the re-order stock level is given by :
(A) $\mathrm{Q} / 2$
(B) $\frac{\mathrm{Q}}{u}-m$
(C) m
(D) $m \cdot u$

JUN - 30219/II—A

185. In the model $\mathrm{S}=\mathrm{Q}-u t$, a stock out will occur when :
(A) $t=0$
(B) $t=u / \mathrm{Q}$
(C) $t=\mathrm{Q} / u$
(D) $\mathrm{Q}=\mathrm{S}$
186. In a $\mathrm{M} / \mathrm{M} / \mathrm{K}$ queueing system the departure rate μn when there are n customers in the system is :
(A) μ
(B) $n \mu$
(C) $n \mu$ if $n \leq k$ and 0 if $n>k$
(D) $n \mu$ if $n \leq k$ and $n k$ if $n>k$
187. For a certain dynamic programming problem, the recurrence equation for optimal solution is found to be $f_{1}(c)=c$
$f_{k}(c)=\max _{0<x \leq c} x \cdot f_{k-1}(c-x)$ for $k>1$.
What is the value of $f_{2}(5)$?
(A) 25
(B) $25 / 2$
(C) $25 / 4$
(D) $125 / 27$
188. When a positive integer is divided into 5 parts, the maximum value of their product is :
(A) 5 K
(B) $(\mathrm{K} / 5)^{5}$
(C) $(5 \mathrm{~K})^{5}$
(D) $5+\mathrm{K}$
189. Which of the following is false ?
(A) If x_{0} is an optimal solution to the primal, then dual has a feasible solution.
(B) If x_{0} is an optimal solution to the primal, then the optimal solution to the dual is given by $B^{-1} C_{B}$ where B is the optimal basis of the primal.
(C) If dual has an unbounded solution, then primal has an infeasible solution.
(D) Dual simplex method always leads to degenerate basic feasible solution.
190. Consider the LPP :

Maximize :

$$
\begin{array}{r}
\mathrm{Z}=3 x_{1}+5 x_{2} \\
x_{1} \leq 4, \\
x_{2} \leq 6, \\
3 x_{1}+2 x_{2} \leq 18, \\
x_{1}, x_{2} \geq 0
\end{array}
$$

$$
\text { Subject to : } \quad x_{1} \leq 4
$$

The first stage in the dynamic programming algorithm to solve the above problem involves :
(A) Maximizing $3 x_{1}$ subject to $x_{1} \leq 4$
(B) Maximizing $3 x_{1}$ subject to $3 x_{1}+2 x_{2} \leq 18$
(C) Maximizing $5 x_{2}$ subject to $3 x_{1}+2 x_{2} \leq 18$
(D) Maximizing $5 x_{2}$ subject to $x_{2} \leq 6$ and $3 x_{1}+2 x_{2} \leq 18$

JUN - 30219/II—A
ROUGH WORK

JUN - 30219/II—A
ROUGH WORK

