Test Booklet Code & Serial No.

प्रश्नपत्रिका कोड व क्रमांक

Paper-II CHEMICAL SCIENCE

D

[Maximum Marks: 100

Signature and Name of Invigilator	Seat No.					
1. (Signature)	(In	figure	s as ir	n Adr	nit C	card)
(Name)	Seat No					
2. (Signature)	(In wo	rds)			
(Name)	OMR Sheet No.					
JAN - 33218	(To be f	illed b	y the	Cand	lidat	e)

Number of Pages in this Booklet: 20

Time Allowed: 14 Hours]

Instructions for the Candidates

- Write your Seat No. and OMR Sheet No. in the space provided 1. on the top of this page
- 2. This paper consists of **50** objective type questions. Each question will carry two marks. All questions of Paper-II will be compulsory, covering entire syllabus (including all electives, without options).
- At the commencement of examination, the question booklet 3. will be given to the student. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as follows
 - To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal or open booklet.
 - (ii)Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to missing pages/ questions or questions repeated or not in serial order or any other discrepancy should not be accepted and correct booklet should be obtained from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given. The same may please be noted.
 - After this verification is over, the OMR Sheet Number should be entered on this Test Booklet.
- Each question has four alternative responses marked (A), (B), (C) and (D). You have to darken the circle as indicated below on the correct response against each item.

Example: where (C) is the correct response.

- Your responses to the items are to be indicated in the OMR 5. Sheet given inside the Booklet only. If you mark at any place other than in the circle in the OMR Sheet, it will not be evaluated. Read instructions given inside carefully. 6.
- Rough Work is to $\rm \bar{b}e$ done at the end of this booklet.
- 8. If you write your Name, Seat Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, you will render yourself liable to disqualification.
- 9. You have to return original OMR Sheet to the invigilator at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are, however, allowed to carry the Test Booklet and duplicate copy of OMR Sheet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table, etc., is prohibited.
- 12. There is no negative marking for incorrect answers.

विद्यार्थ्यांसाठी महत्त्वाच्या सुचना

Number of Questions in this Booklet: 50

- परिक्षार्थींनी आपला आसन क्रमांक या पृष्ठावरील वरच्या कोपऱ्यात लिहावा. 1. तसेच आपणांस दिलेल्या उत्तरपत्रिकेचा क्रमांक त्याखाली लिहावा
- सदर प्रश्नपत्रिकेत 50 बहुपर्यायी प्रश्न आहेत. प्रत्येक प्रश्नास दोन गुण 2. आहेत. या प्रश्नपत्रिकेतील **सर्व** प्रश्न सोडविणे अनिवार्य आहे. सदरचे प्रश्न हे या विषयाच्या संपर्ण अभ्यासक्रमावर आधारित आहेत.
- परीक्षा सरू झाल्यावर विद्यार्थ्याला प्रश्नपत्रिका दिली जाईल. सरुवातीच्या 5 मिनीटांमध्ये आपण सदर प्रश्नपत्रिका उघडून खालील बाबी अवश्य तपासून
 - प्रश्नपत्रिका उघडण्यासाठी प्रश्नपत्रिकेवर लावलेले सील उघडावे. सील नसलेली किंवा सील उघडलेली प्रश्नपत्रिका स्विकारू नये.
 - पहिल्या पृष्ठावर नमुद केल्याप्रमाणे प्रश्नपत्रिकेची एकण पृष्ठे तसेच प्रश्नपत्रिकेतील एकण प्रश्नांची संख्या पडताळन पहावी. पृष्ठे कमी असलेली/कमी प्रश्न असलेली/प्रश्नांचा चुकीचा क्रम असलेली किंवा इतर त्रुटी असलेली सदोष प्रश्नपंत्रिका सुरुवातीच्या 5 मिनिटातच पर्यवेक्षकाला परत देऊन दुसरी प्रश्नपत्रिका मागवन घ्यावी, त्यानंतर प्रश्नपत्रिका बदलून मिळणार नाही तसेचे वेळही वाढवन मिळणार नाही याची कुपया विद्यार्थ्यांनी नोंद घ्यावी.
 - वरीलप्रमाणे सर्व पडताळून पहिल्यानंतरच प्रश्नपत्रिकेवर ओ.एम.आर. उत्तरपत्रिकेचा नेबर लिहावा.
- प्रत्येक प्रश्नासाठी (A), (B), (C) आणि (D) अशी चार विकल्प उत्तरे दिली आहेत. त्यातील योग्य उत्तराचा रकाना खाली दर्शविल्याप्रमाणे ठळकपणे काळा/निळा करावा.

उदा. : जर (C) हे योग्य उत्तर असेल तर.

(D)

- या प्रश्नपत्रिकेतील प्रश्नांची उत्तरे ओ.एम.आर. उत्तरपत्रिकेतच दर्शवावीत. इतर ठिकाणी लिहीलेली उत्तरे तपासली जांणार नाहीत.
- आत दिलेल्या सूचना काळजीपूर्वक वाचाव्यात. 6.
- 7. प्रश्नपत्रिकेच्या शेवटी जोडलेल्या को-या पानावरच कच्चे काम करावे.
- जर आपण ओ.एम.आर. वर नमूद केलेल्या ठिकाणा व्यतिरीक्त इतर कोठेही 8. नाव, आसन क्रमांक, फोन नंबर किंवा ओळख पटेल अशी कोणतीही खूण केलेली आढळून आल्यास अथवा असभ्य भाषेचा वापर किंवा इतर गैरमार्गींचा अवलंब केल्यास विद्यार्थ्याला परीक्षेस अपात्र ठरविण्यात येईल.
- परीक्षा संपल्यानंतर विद्यार्थ्याने मूळ ओ.एम.आर. उत्तरपत्रिका पर्यवेक्षकांकडे 9. परत करणे आवश्यक आहे. तथापी, प्रश्नपत्रिका व ओ.एम.आर. उत्तरपत्रिकेची द्वितीय प्रत आपल्याबरोबर नेण्यास विद्यार्थ्यांना परवानगी आहे.
- फक्त निळ्या किंवा काळ्या बॉल पेनचाच वापर करावा. 10.
- कॅलक्यलेटर किंवा लॉग टेबल वापरण्यास परवानगी नाही. 11.
- चुकीच्या उत्तरासाठी गुण कपात केली जाणार नाही. 12.

JAN - 33218/II—D

Chemical Science Paper II

Time Allowed: 75 Minutes]

[Maximum Marks: 100

Note: This Paper contains **Fifty** (50) multiple choice questions. Each question carrying **Two** (2) marks. Attempt *All* questions.

- 1. Which of the following is *not* a redox reaction?
 - ${\rm (A)} \quad {\rm CuO} \, + \, {\rm H_2} \longrightarrow {\rm Cu} \, + \, {\rm H_2O}$
 - (B) $\operatorname{Fe_2O_3}$ + 3CO \longrightarrow 2Fe + 3CO $_2$
 - (C) $2K + F_2 \longrightarrow 2KF$
 - $(D) \quad \ \, \text{BaCl}_2 \ + \ \text{H}_2\text{SO}_4 \ \longrightarrow \ \text{BaSO}_4 \ + \ 2\text{HCl}$

2.

Which of the following statements best describes the flow of electrons in the above electrochemical cell?

- (A) From Pb electrode to Zn electrode through the Cu wire
- (B) From Pb electrode to Zn electrode through the salt bridge
- (C) From the Zn electrode to Pb electrode through the salt bridge
- (D) From Zn electrode to Pb electrode through Cu wire
- 3. A radioactive substances has half life of 140 days. The fraction of the substance that will remain after 2 years and 250 days is:

3

(A) 1/7

(B) 1/14

(C) 127/128

(D) 1/128

4. To balance the following reaction:

$$\mathrm{SO}^{2-}_{3(\mathrm{aq.})} + \mathrm{H}_2\mathrm{O} \longrightarrow \ \mathrm{SO}^{2-}_{4(\mathrm{aq.})} + 2\mathrm{H}^+ \ (\mathrm{aq.})$$

one needs to:

- (A) Add 2H₂O to the left side
- (B) Add $2e^-$ to the right side
- (C) Add $2e^-$ to the left side
- (D) Multiply both sides by a factor of 2
- 5. When a small amount of copper powder is added to ${\rm ZnSO_4}$ solution, what would be the observation ?
 - (A) Effervesence

- (B) Precipitation of a white solid
- (C) Formation of a blue solution (D) No reaction
- 6. General acid (A) Base (B) titration curve is represented as follows:

What should be the equation for estimation of pH at point (L):

$$(A) pH = pK_w + log [B]$$

(B)
$$pH = \frac{1}{2}pK_a + \frac{1}{2}pK_w$$

(C)
$$pH = \frac{1}{2}pK_a - \frac{1}{2} log [A]_{initial} (D) pH = pK_a$$

		5		[P.T.O.	
	(C)	CH ₃ COO ⁻	(D)	Cl ₂ CHCOO ⁻	
	(A)	${\rm ClCH_2COO^-}$	(B)	${\rm Cl}\text{-}{\rm CH}_2\text{-}{\rm CH}_2{\rm COO}^-$	
10.	Whic	h of the following is the strong	gest co	onjugate base ?	
	(C)	8.6	(D)	4.3	
	(A)	5.0	(B)	9.6	
	\log_{10}	0.2 = -0.6990:			
9.	The pH of 0.2M $HCN_{(aq.)}$ is $(pK_a \text{ of } HCN = 9.31; \log_{10} 2 = 0.3010 \text{ a})$			$N = 9.31$; $\log_{10} 2 = 0.3010$ and	
	(C)	Bronsted acid of OH ⁻	(D)	A Lewis acid	
	(A)	Not isoelectric with He	(B)	Bronsted-Lowrry base of ${\rm H_2}$	
8.	Hydr	ide ion (H ⁻) is :			
	(C)	10.10	(D)	11.36	
	(A)	2.63	(B)	3.94	
	рН о	f this solution is about (given p	K _a of	HCIO = 7.43; log 0.05 = -1.301)	
	${ m NaOH}_{(aq)}$ occurs when the molar concentration of NaClO is 0.050 M. The				
7.	The stoichiometric point of the titration of 25.0 mL, 0.100 M HClO with 0.10				

11.	The	he number of Metal-Metal bonds in $[Re_2Cl_8]^{2-}$ is/are :			
	(A)	One	(B)	Two	
	(C)	Three	(D)	Four	
12.	The	structure of $(NH_3)_3CrO_4$ is :			
	(A)	Trigonal bipyramid	(B)	Pentagonal bipyramid	
	(C)	Square Pyramid	(D)	Pentagonal Pyramid	
13.		In gas chromatography, the basis of separation of the components difference in :			
	(A)	Conductivity	(B)	Molecular Weight	
	(C)	Molarity	(D)	Partition Coefficient	
14.	The normality of a solution is determined by four separate titrations, the results being 0.2041 , 0.2049 , 0.2039 and 0.2043 . The average deviation for the results :				
	(A)	0.0003	(B)	0.2043	
	(C)	0.0006	(D)	0.0009	
15.	In the meta	ne Kroll process Titanium is extracted by reducing ${ m TiCl}_4$ withal.			
	(A)	Barium	(B)	Magnesium	
	(C)	Aluminum	(D)	Zinc	
16.	The 2	X-band EPR spectra of phenyl 1	adical	will exhibitlines.	
	(A)	3	(B)	8	
	(C)	18	(D)	28	

		77		[D,M,O	
	(C)	Octahedron	(D)	Trigonal bipyramid	
	(A)	Square planar	(B)	Tetrahedral	
21.	The geometry of the interhalogen compound BrF3 is:			nd BrF ₃ is :	
	(D)	doublet in (i), (ii) and (iii)			
	(C) singlet in (i), and (iii), doublet in (ii)				
	(B) singlet in (ii), doublet in (i) and (iii)				
	(A) singlet in (i), doublet in (ii) and (iii)				
	$spectra\ of\ (i)\ FeSO_4\cdot 7H_2O,\ (ii)\ K_4[Fe(CN)_6],\ (iii)\ Na_2[Fe(CN)_5NO]\cdot 2H_2O\ ?$				
20.	Whic	h of the following statements is	s true	with respect to ⁵⁷ Fe Mossbauer	
	(C)	-0.4	(D)	0.0	
	(A)	-1.2	(B)	-0.8	
19.	Cryst	al Field Stabilization Energy fo	ra d^3	ion in tetrahedral geometry is:	
	(C)	2·83 B.M.	(D)	5.92 B.M.	
	(A)	3.87 B.M.	(B)	4·90 B.M.	
	grour	nd state term is:			
18.	The s	spin only magnetic moment for a	first r	row transition metal ion with $3F_4$	
	(C)	D_{5d}	(D)	$\mathrm{D_{5h}}$	
	(A)	$\mathrm{C_{5v}}$	(B)	$\mathrm{C_{5h}}$	
	symmetry group.				
17.	The s	staggered configuration of ferro	cene [I	$[Fe(\eta^5-C_5H_5)_2]$ belong to	

22.	The I	UPAC nomenclature of [Co·Cl·G	CN·NC	$O_2 \cdot (NH_3)_3$] is :
	(A) Triamminechloridocyanidonitrocobalt (III)			
	(B)	Chloridocyanidonitrotriammine	cobalt	(III)
	(C)	Cyanidochloridonitrotriammine	cobalt	(III)
	(D)	Triamminechloridonitrocyanido	cobalt	(III)
23.	The cation of dichloro bis(ethylenediamine) cobalt (III) belongs to D_3 symmetric symmetric bis (ethylenediamine) cobalt (III) belongs to D_3 symmetric bis (ethylenediamine) cobalt (ethylenediami			
	is an	example of:		
	(A)	Coordination isomerism	(B)	Optical isomerism
	(C)	Linkage isomerism	(D)	Ionization isomerism
24.	The ¹	G term of nd^2 configuration can	an be	assigned to:
	(A)	45 microstates	(B)	9 microstates
	(C)	21 microstates	(D)	15 microstates
25.	The I	F—N—F bond angle in NF ₃ is	:	
	(A)	109° 28′	(B)	107° 48′
	(C)	102° 30′	(D)	104° 27′
26.	The d	correct order of First Ionization	energ	y of group 13 elements is:
	(A)	B > Tl > Ga > Al > In	(B)	B > Tl > Al > Ga > In
	(C)	B > Al > Ga > In > Tl	(D)	B > Ga > Tl > In > Al
27.	The i	onophore valinomycin is highly	select	tive for :
	(A)	K ⁺	(B)	Na ⁺
	(C)	${ m Mg^{2+}}$	(D)	Ca^{2+}

- 28. Common feature of CO, CN⁻ and NO⁺ ligands is:
 - (A) They have empty π orbitals
 - (B) They act as π donor ligands
 - (C) They are all weak field ligands
 - (D) They decrease the value of Δ_0
- 29. Number of stereoisomers possible for the compound, $CH_3CH = CH_CH(OH)CH$ = $CHCH_3$ is :
 - (A) 4

(B) 6

(C) 7

- (D) 8
- 30. The *correct* order of acidity for the following compounds is :

- $(A) \quad III > I > II > IV$
- (B) II > III > IV
- $(C) \quad \text{IV} > \text{II} > \text{I} > \text{III}$
- (D) III > II > IV

OH

31. Number of signals observed in the ¹H NMR and proton decoupled ¹³C NMR spectrum of the following compound, respectively, are:

- (A) 4, 4
- (C) 8, 7

- (B) 5, 4
- (D) 8, 4
- 32. The major product formed in the following reaction is:

$$\begin{array}{c}
Cl & Cl \\
\hline
AlCl_3 \\
(anhydrous)
\end{array}$$

Cl

(D)

C1

$$(C) \qquad \begin{array}{c} Cl \\ \\ Cl \end{array}$$

Ċl

- 33. Amongst the following, the compound that will show IR absorption band at $1780~{\rm cm}^{-1}$ is :
 - $(A) \qquad (B) \qquad (D) \qquad (D)$
- 34. Major product of the following reaction is:

35. The correct IUPAC nomenclature of the following compound is :

- (A) 5-Bromo-2-chloroheptane
- (B) 2-Chloro-5-bromoheptane
- (C) 3-Bromo-6-chloroheptane
- (D) 6-Chloro-3-bromoheptane

36. Number of signals observed in the ${}^{1}\mathrm{H}$ NMR spectrum is p-tolualdehyde is :

(A) 3

(B) 4

(C) 5

(D) 6

37. The *correct* absolute configuration for the chiral centers in the following compound is:

(A) 1S, 4S

(B) 1S, 4R

(C) 1R, 4R

(D) 1R, 4S

38. Major product formed in the following reaction is:

39. Multiplicity of the signal expected in the ¹H NMR spectrum of the following compound is:

(A) singlet

(B) doublet

(C) triplet

- (D) AB quartet
- 40. The correct IUPAC nomenclature of the following compound is :

- (A) 2-Nitro-5-carbaldehydo anisole
- $(B) \hspace{0.5cm} \hbox{2-Methoxy-4-carbaldehydo nitrobenzene} \\$
- (C) 4-Nitro-5-methoxy benzaldehyde
- $(D) \hspace{0.5cm} \hbox{3-Methoxy-4-nitro benzaldehyde} \\$

41. The least stable conformation of 2-methylbutane is:

42. The major product formed in the following reactions is:

43. Major product formed in the following reaction is:

44. Chiral compound amongst the following is:

- 45. The freezing point of a mixture containing 1.60 g of naphthalene (molar mass = 128 g mol⁻¹) and 20 g of benzene (molar mass = 78 g mol⁻¹) is 2.8° C and that of pure benzene is 5.5° C. The value of the molal freezing point depression constant of benzene is :
 - $\rm (A) ~~4{\cdot}3^{\circ}C~kg~mol^{-1}$

(B) $4.3^{\circ}\text{C g mol}^{-1}$

 $\rm (C) ~~4{\cdot}3^{\circ}C~mol~kg^{-1}$

- $(D) \qquad 5{\cdot}1^{\circ}C \ \ mol \ \ g^{-1}$
- 46. The vapour pressure of 0.5 M aqueous KNO₃ solution is 749.7 torr at 100°C.The activity of water in this solution at 100°C is :
 - (A) 0.9218

(B) 1.0023

(C) 1.0230

- (D) 0.9864
- 47. When an ideal kept in a closed container at constant volume was cooled from 50°C to 25°C, it will lead to :
 - (A) Increase in the numbers of collisions per unit time
 - (B) Increase in the mean free path of the gas
 - (C) Increase in the average velocity of the gas
 - (D) Decrease in the average velocity of the gas

48. For the decomposition reaction

$$\rm A_3\,\rightarrow\,3/2A_2$$

The following concentration Vs time profiles were obtained. At time t_A , percentage of A_3 decomposed is:

(A) 75

(B) 50

(C) 25

(D) 10

49. In the reaction:

$$\mathsf{Cl}_{2(g)} \, + \, 3\mathsf{F}_{2(g)} \, \rightleftharpoons \, 2\mathsf{ClF}_3; \, \Delta\mathsf{H}_r = - \, 329 \, \, \mathrm{kJ}$$

When the reaction is in equilibrium, which of the following will increase the amount of ClF₃?

- (I) Increasing the temperature
- (II) Increasing the volume of the reactor
- $(III) \quad Removing \ \, Cl_2$
- (IV) Adding F₂
- (A) I, II and III

(B) IV only

(C) I and IV

(D) II and IV

50. In the reaction:

$$ZnO + X + heat \rightarrow Zn + XO$$

Which element represented by X is industrially used to produce Zn metal?

 $(A) \qquad Cu$

(B) C

(C) Hg

(D) Pb

JAN - 33218/II—D

ROUGH WORK