Mathematical Sciences Paper II

Time Allowed : 75 Minutes][Maximum Marks : 100Note : This Paper contains Fifty (50) multiple choice questions. Each question
carries Two (2) marks. Attempt All questions.

-

1.	Let $f(z) = \sin z, z \in \mathbb{C}$. Then $f(z)$:	3.	Let the sequence $\{a_n\}$ be given
	(A) is bounded in the complex plane		by
	(B) assumes all complex numbers		1, 2, 3, 1 + $\frac{1}{2}$, 2 + $\frac{1}{2}$, 3 + $\frac{1}{2}$,
	(C) assumes all complex numbers		$1 + \frac{1}{3}, 2 + \frac{1}{3}, 3 + \frac{1}{3}, \dots$
	except i		Then
	(D) assumes all complex numbers		$\lim_{n \to \infty} \sup a_n$
2.	except <i>i</i> and $-i$ The radius of convergence of the series $\sum \frac{n!z^n}{n^n}$	4.	is :
			(A) 3
			(B) ∞
			(C) 1
	is :		(D) –1
	(A) 1		If $\phi \neq E \subset F \subset {\rm I\!R}$, then :
	 (B) ∞ (C) 1/4 (D) e 	(A) inf $E \leq \inf F$	
			(B) inf E > inf F
			(C) inf $E \ge \inf F$
			(D) inf E < inf F

[**P.T.O.**

5. If a and b are real numbers, then $\inf \{a, b\} =$

(A)
$$\frac{a+b-|a-b|}{2}$$

(B) $\frac{a+b+|a-b|}{2}$
(C) $\frac{a-b+|a+b|}{2}$
(D) $\frac{a-b-|a-b|}{2}$

6. The dimension of the space of $n \times n$ matrices all of whose components are 0 expect possibly the diagonal components is :

(A) n^2

- (B) n 1
- (C) $n^2 1$
- (D) *n*

7. The matrix $R(\theta)$ associated with the rotation by $\theta = \pi/4$ is :

(A)
$$\begin{bmatrix} -\sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

(C)
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

(D)
$$\begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}$$

- 8. Let W be a subspace of a vector space V and let $T : W \rightarrow V'$ be a linear map, then :
 - (A) T can be extended to a linear transformation from V to V'

 - (C) Ker T is not a subspace of V
 - (D) Im T is a subspace of \boldsymbol{V}

- 9. Let S, T \in L(V11, V2), V1, V2 are finite dimensional vector spaces. Then :
 - (A) rank S + rank T \leq rank (S + T)
 - (B) Im (S + T) = Im S + Im T
 - $(C) Im (S + T) \subseteq Im S + Im T$
 - (D) min{rank S, rank T} \leq rank ST, where V₁ = V₂
- 10. Let A be a matrix similar to a square matrix B. Then which one of the following is *false* ?
 - (A) If A is self-adjoint then so is B
 - (B) If A is non-singular then sois B
 - (C) Determinant of A is the same as the determinant of B
 - (D) Trace of A is the same as the trace of B

- 11. A sample space consists of five simple events E_1 , E_2 , E_3 , E_4 and E_5 . If $P(E_1) = P(E_2) = 0.1$, $P(E_3) = 0.4$ and $P(E_4) = 3P(E_5)$. Then $P(E_4)$ and $P(E_5)$:
 - (A) are 0.06 and 0.02, respectively
 - (B) cannot be determined from the given information
 - (C) are 0.6 and 0.2, respectively
 - (D) are 0.3 and 0.1, respectively
- 12. If independent binomial experiments are conducted with n = 10 trials. If the probability of success in each trial is P = 0.6, then the average number of successes per experiment is :
 - (A) 4
 - (B) 6
 - (C) 8
 - (D) 10

13. The joint distribution of r.v.s X and Y is given by :

X\Y	-2	0	2
0	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
2	$\frac{1}{8}$	$\frac{1}{8}$	0

Then P[X + Y = 0] is :

- (A) 3/4
- (B) 1/4
- (C) 3/8
- (D) 5/8
- 14. Let X and Y be two r.v.s such that E[X] = 2, $E[X^2] = 5$, E[Y] = 4, $E[Y^2] = 16$ and E[XY] = 12.

Consider the statements :

- (I) The r.v.s X and Y are independent
- (II) The r.v. Y is degenerate
- (III) Given expected values are not compatible

Then :

- (A) Only statements I and II are correct
- (B) Only statements II and III are correct
- (C) Only statements I and III are correct
- (D) All three statements are correct

- 15. The objective 'Linear' in Linear Programming Problem implies :
 - (A) The objective function and the constraints are both linear in the variables
 - (B) The constraints are linear but not the objective function
 - (C) The objective function alone is linear in the variables
 - (D) None of the above

Maximize :

16. The optimal solution to the Linear Programming Problem :

Subject to : $x_1 + x_2 \le 1 \rightarrow (1)$

$$\begin{array}{l} 3x_1 \,+\, x_2 \,\leq\, 2 \,\rightarrow\, (2) \\ x_1 \,+\, 2x_2 \,\leq\, 3 \,\rightarrow\, (3) \\ x_1, \,x_2 \,\geq\, 0 \,\rightarrow\, (4) \end{array}$$

 $Z = 2x_1 + x_2$

- (A) lies at the intersection of (1) and (3)
- (B) lies at the intersection of (2) and (3)
- (C) lies at the intersection of (1) and (2)
- (D) cannot be determined

4

:

17. If $a_n = (-1)^n n$, for $n = 1, 2, 3, 4, \dots$, then :

 $\lim_{n \to \infty} \sup a_n$

is equal to :

(A) 1

- (B) ∞
- (C) –1
- (D) $-\infty$

Or

Let F and G be probability distribution functions. Which of the following may *not* be a probability distribution function ?

- (A) $H(x) = F^2(x)G^3(x)$
- (B) H(x) = F(G(x))

(C)
$$H(x) = \int_{-\infty}^{x} G(u) dF(u)$$

(D) $H(x) = \frac{F(x) + G(x)}{2}$

18. If
$$\phi \neq E \subset F \subset \mathbb{R}$$
, then
(A) $\sup E \leq \sup F$
(B) $\sup E \geq \sup F$
(C) $\sup E < \sup F$
(D) $\sup E > \sup F$
Or

The characteristic function of a standard Cauchy distribution :

- (A) is $e^{-|t|}$
- (B) is e^{it}
- (C) is $e^{\pi t}$
- (D) does not exist
- 19. Radius of convergence of the series :

$$\sum \frac{n! z^n}{n^n}$$
is:
(A) 1
(B) $\frac{1}{4}$
(C) e
(D) ∞

5

$$Or$$
 Or The p.d.f. of the random variable
X follows $f(x)$, where : $f(x) = \frac{1}{20} \exp\left[-\frac{|x-\theta|}{\theta}\right]$,
 $-\infty < x < \infty$ Let the random variables X_1, X_2
be distributed as $N(\theta, 1)$. Then
number of unbiased estimators of
 θ is : $f(x) = \frac{1}{20} \exp\left[-\frac{|x-\theta|}{\theta}\right]$,
 $-\infty < x < \infty$Itel the random variables X_1, X_2
be distributed as $N(\theta, 1)$. Then
number of unbiased estimators of
 θ is :(A) $\frac{1}{\theta}$(A) infinity(B) 20
(C) θ
(D) 0(B) 3
(C) 2
(D) 4 20. The interval of convergence of the
series
 $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ 21. In order that f defined by
 $f(x) = (1 + x)^{\cot x} x \neq 0$ be continuous
at $x = 0$, how $f(0)$ be defined ?(A) $-1 < x \le 1$
(B) $-1 < x < 1$
(C) $-1 \le x < 1$
(D) $0 \le x \le 2$ (B) $f(0) = 1$ 0 $0 \le x \le 2$

Let the random variables X_1, X_2 are Poisson variates with parameter λ . Then which of the statements is *true* ?

- (A) X_1 is sufficient for λ
- (B) X_1 X_2 is sufficient for λ
- (C) $X_1 + 2X_2$ is not sufficient for λ
- (D) X_2 is sufficient for λ
- 22. If $g(x) = \sin x$ and $f(x) = \cos x$, then the point at which the conclusion of Cauchy's Mean Value Theorem holds in $[-\pi/4, \pi/4]$ is :
 - (A) π/6
 - (B) 0
 - (C) π/4
 - (D) –π/6

Or

For testing $H_0: F_X(x) = H_Y(y)$, when two independent random observations on X and Y are available, which of the following non-parametric test cannot be used ?

- (A) Mann-Whitney test
- (B) Sign test
- (C) Kolmogorov-Smirnov test
- (D) Wald-Wolfowitz run test
- 23. If f(x) is continuous on [a, b], thenthe *incorrect* statement among thefollowing is :
 - (A) f(x) is bounded on [a, b]
 - (B) f(x) assumes all values betweenf(a) and f(b)
 - (C) f(x) is increasing on [a, b]
 - (D) f(x) is uniformly continuous on[a, b]

Let X_1 , X_2 , ..., X_n be a sample from $N(\mu, 1)$. Then the shortest confidence interval based on $T\mu(X) = \sqrt{n} \left(\overline{X} - \mu\right)$ is :

(A)
$$\left(\overline{\mathbf{X}} - \frac{\mathbf{Z}_{1-\alpha/2}}{\sqrt{n}}, \overline{\mathbf{X}} + \frac{\mathbf{Z}_{1-\alpha/2}}{\sqrt{n}} \right)$$

(B) $\left(\overline{\mathbf{X}} - \frac{\mathbf{Z}_{1-\alpha/2}}{\sqrt{n}}, \overline{\mathbf{X}} + \frac{\mathbf{Z}_{\alpha/2}}{\sqrt{n}} \right)$
(C) $\left(\overline{\mathbf{X}} - \frac{\mathbf{Z}_{\alpha/2}}{\sqrt{n}}, \overline{\mathbf{X}} + \frac{\mathbf{Z}_{\alpha/2}}{\sqrt{n}} \right)$

(D)
$$\left(\overline{\mathbf{X}} - \frac{\mathbf{Z}_{\alpha/2}}{\sqrt{n}}, \, \overline{\mathbf{X}} + \frac{\mathbf{Z}_{1-\alpha/2}}{\sqrt{n}}\right)$$

- 24. Let $f : \mathbb{C} \to \mathbb{C}$ be a complex valued function. If f(z) and $\overline{f(z)}$ are both analytic, then :
 - (A) f(z) is a constant function
 - (B) f(z) is the identity function
 - (C) f(z) is unbounded
 - (D) f(z) is a non-constant entire function

If, for a given α , $0 \le \alpha \le 1$, nonrandomized Neyman-Pearson and likelihood ratio tests of a simple hypothesis against a simple alternative exist, then :

Or

- (A) They are equivalent
- (B) They are one and the same
- (C) They are exactly opposite
- (D) One can't say anything about it

$$x = \frac{1}{2} (-1 + i\sqrt{3}), \ y = -\frac{1}{2} (1 + i\sqrt{3}).$$

Then :

(A) $x^{2} + y^{2} = 1$ (B) $x^{2} - y^{2} = x - y$ (C) $(xy)^{2} = xy$ (D) $x^{3} = x, y^{3} = y$

Let y_1 , y_2 , y_3 be three independent observations having expectations, $E(y_1) = \beta_0 - \beta_1 + \beta_2$, $E(y_2) = \beta_0 - 2\beta_2$, $E(y_3) = \beta_0 + \beta_1 + \beta_2$ and $V(y_i) = \sigma^2$ for i = 1, 2, 3. The least squares estimates of β_0 , β_1 and β_2 are $\hat{\beta}_0 = (y_1 + y_2 + y_3)/3$, $\hat{\beta}_1 = (-y_1 + y_3)/2$, $\hat{\beta}_2 = (y_1 - 2y_2 + y_3)/6$. Which of the following statements is false ?

(A) Variances of $\hat{\beta}_i$ are unequal

- (B) $\hat{\beta}_i$'s are unbiased estimators of β_i
- (C) It is possible to obtain unbiased $\label{eq:stimator} estimator \mbox{ of } \sigma^2$

(D) $\operatorname{cov}(\hat{\beta}_i, \hat{\beta}_i) = 0$

- 26. If $|z_1 + z_2| = |z_1| + |z_2|$ for $z_1, z_2 \in \mathbb{C}$, then :
 - (A) One of z_1 or z_2 is positive multiple of the other
 - (B) z_1 and z_2 have the same length
 - (C) z_1 is real and z_2 is imaginary
 - (D) z_1, z_2 are real

Or

For the two way ANOVA model :

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$ i = 1,, 4; j = 1,, 5; k = 1, 2,

the error degrees of freedom are :

(C) 12(D) 27

(A) 20

(B) 24

27. For $z \in \mathbb{C}$ the inequality :

$$|z + 1| > |z - 1|$$

is :

- (A) always true
- (B) never true
- (C) true iff Re z > 0
- (D) true iff Im z > 0
 - Or

Let y_1 , y_2 be two independent observations having expectations $E(y_1) = \theta_1 + \theta_2$, $E(y_2) = \theta_1 - \theta_2$ and $V(y_1) = V(y_2) = \sigma^2$. Let $\hat{\theta}_i$ be least squares estimate of θ_i . Which of the following statements is *correct* ?

- (A) $\hat{\theta}_1 = \frac{y_1 y_2}{2}$ and $V(\hat{\theta}_1) = \frac{\sigma^2}{2}$ (B) $\hat{\theta}_2 = \frac{y_1 + y_2}{2}$ and $V(\hat{\theta}_2) = \frac{\sigma^2}{4}$
- (B) $0_2 = \frac{1}{2}$ and $v(0_2) = \frac{1}{4}$
- (C) $\hat{\theta}_1 = \frac{y_1 + y_2}{2}$ and $V(\hat{\theta}_1) = \frac{\sigma^2}{2}$ (D) $\hat{\theta}_2 = \frac{(y_1 - y_2)}{2}$ and $V(\hat{\theta}_2) = \frac{\sigma^2}{4}$

- 28. Consider the statements :
 - (a) If a function is analytic in a bounded domain, then it is bounded.
 - (b) If u(x, y) is harmonic in a domain D, then there exists a harmonic function v(x, y) such that u(x, y) + iv(x, y) is analytic.

Then :

- (A) both (a) and (b) are true
- (B) both (a) and (b) are false
- (C) only (a) is true
- (D) only (b) is true

Or

A block design is said to be connected if :

- (A) R(C) < v 1(B) R(C) = v(C) R(C) < v - 2
- (D) R(C) = v 1

29.	The value of $(i)^i - (-i)^{-i}$ is :		Or		
	(A) zero(B) non-zero real		Layout of a block design with 4		
			blocks and four treatments A, B, C,		
	 (C) purely imaginary (D) simply a chaos Or A RBD is : 		D is given below :		
			Block 1 : A, B, C, x		
			Block 2 : A, B, D, y		
			Block $3 : A, C, D, w$		
30.					
	(A) Connected and balanced		Block 4 : B, C, D, z		
	(B) Connected but not balanced (C) Not connected but balanced (D) Not connected not balanced Define a function $f : \mathbb{C} \to \mathbb{C}$ by f(z) = z . Then $f(z)$ is :		Identify x , y , w and z so that given		
			design is RBD.		
			(A) $x = D, y = C, w = B, z = A$		
			(B) $x = B, y = A, w = B, z = A$		
			(C) $x = B, y = C, w = B, z = A$		
		31.	(D) $x = D, y = B, w = B, z = A$		
	(A) continuous everywhere but not		Which of the following ring is		
	differentiable at the origin		isomorphic to the field of complex		
	(B) continuous everywhere but		numbers ?		
	differentiable only at the origin		(A) $\mathbf{R}[x]$		
	(C) continuous and differentiable		(B) $\mathbb{C}\left[\sqrt{5}i\right]$		
	everywhere		(C) $\mathbf{Q}[i]$		
	(D) analytic at the origin		(D) $\mathbb{C}[x]$		

Or

For any two events A and B, which of the following are always true ?

- (A) P(A or B) = P(A) + P(B)
- (B) P(A or B) = P(A) + P(B) P(A and B)
- (C) P(A or B) = P(A). P(B)
- (D) P(A and B) = P(A). P(B)
- 32. Let A, B be ideals of a ring R :
 - (A) AB = A \cap B
 - $(B) \ AB \ \subseteq \ A \ \cap \ B$
 - $(C) \ AB \ \subset \ A \ \cap \ B$
 - (D) $AB = A \cap B$ if A = BOr

Given that we have collected pairs of observations on two variables X and Y, we would consider fitting a straight line with X as an explanatory variable if :

- (A) the change in Y is an additive constant
- (B) the change in Y is a constant for each unit change in X
- (C) the change in Y is a fixed percent of Y
- (D) the change in Y is exponential

- 33. Let R, S be rings and $R \otimes S$ be the direct product of R and S. Then which of the following is *not* true ?
 - (A) If R and S are commutative then so is $R \otimes S$
 - (B) If R and S are non-commutative then so is $R \otimes S$
 - (C) If R and S are with identity then so is $R \otimes S$
 - (D) If R and S are integral domains then so is $R \otimes S$

Or

The least squares regression line is the line :

- (A) for which the sum of the residuals about the line is zero
- (B) which has the largest sum of the squared residuals of any line through the data values
- (C) which is determined by use of a function of the distance between the observed Y's and the predicted Y's
- (D) which has the smallest sum of the squared residuals of any line through the data values

- 34. Let G be a group, $a \in G$ a fixed element and $f: G \rightarrow G$ be a mapping given by $f(x) = axa^{-1}$. Which of the following is *not* true ?
 - (A) f is an automorphism
 - (B) f is not a homomorphism
 - (C) f is onto
 - (D) f is one-to-one

Or

In a single-factor ANOVA problem involving five treatments, with a random sample of four observations from each one, it is found that : $SST_r = 16.1408$ and SSE = 37.3801. Then the value of test statistic is : (A) 1.522 (B) 1.619 (C) 2.316 (D) 0.432

- 35. Let I be an ideal of a ring R, such that $\frac{R}{I} \cong \mathbb{Z}_2$, Then which of the following is *true* ?
 - (A) Both R and I are finite
 - (B) R is finite iff I is finite
 - (C) Both R and I are infinite
 - (D) If R is infinite, then I is finite

Or

A survey of college students taking the professional exam to be certified as public school teacher shows that 15 percent fail. On a national exam day, 12,000 students take the test. Let X denote the number who fail. The mean value of X is :

(A) 12,000

(B) 1,800

(C) 1,500

(D) 10,200

- 36. Let A, B be ideals of a ring R. Suppose that $A + B = A \cup B$. Then which of the following is *true* ?
 - (A) A + B = A
 - (B) $AB = A \cap B$
 - (C) $AB = A \cup B$
 - $(D) \ \ Either \ A \ \subseteq \ B \ \ or \ \ B \ \subseteq \ A$

Or

Which of the following is *not* example of a variable ?

- (A) Gender of a high school graduate
- (B) Number of major credit cards a person has
- (C) Type of automobile transmission
- (D) Capital city of a country

- 37. Let v and w be eigen-vectors of T corresponding to two distinct eigen-values λ_1 and λ_2 respectively. Then :
 - (A) for non-zero scalars α_1 , α_2 , the vector $\alpha_1 v + \alpha_2 w$ is not an eigen-vector of T
 - (B) for all scalars α_1 , α_2 , the vector $\alpha_1 v + \alpha_2 w$ is not an eigen-vector of T
 - (C) $\alpha_1 v + \alpha_2 w$ is an eigen-vector of T if $\alpha_1 = \alpha_2$
 - (D) $\alpha_1 v + \alpha_2 w$ is an eigen-vector of T if $\alpha_1 = -\alpha_2$ *Or*

The initial solution of a Transportation problem can be obtained by applying any known method. However, the only condition is that :

- (A) The rim conditions are satisfied
- (B) The solution must be optimum
- (C) The solution should be nondegenerate
- (D) All of the above

- 38. Let S and T be two diagonalizable linear operator that are similar.Then :
 - (A) Eigen-values of S and T are conjugates
 - (B) S and T have same characteristic polynomial
 - (C) Eigen-vectors of S and T are conjugates
 - (D) S and T are triangulable Or

You are given a two server queueing system, in a steady-state condition where the number of customers in the system varies between 0 to 4. The probability that there are exactly *n* customers in the system is P_n and the values of P_n are $P_0 = \frac{1}{16} = P_4$; $P_1 = \frac{4}{16} = P_3$ and $P_2 = \frac{6}{16}$ then Expected number of customers in the queue L_q is : (A) 1 (B) $\frac{3}{8}$ (C) $\frac{3}{4}$

 $(D) \ 2$

- 39. Let W be a subspace of a finite dimensional vector space V. Then :
 - (A) Linearly independent subsetof W need not be Linearlyindependent in V
 - (B) W need not be finite dimensional
 - (C) dim $W = \dim W^0$, where W^0 is the annihilator of W
 - (D) dim V = dim W + dim W⁰, where W⁰ is the annihilator of W

Or

The problem of replacement in the replacement theory is *not* concerned about the :

- (A) items that deteriorate graphically
- (B) items that fail suddenly
- (C) determination of optimum replacement interval
- (D) maintenance of an item to work out profitability

[P.T.O.

- 40. Let N be a nilpotent matrix :
 - (A) I-N is invertible
 - (B) Eigen-values of N are non-zero
 - (C) N is diagonalizable
 - (D) Eigen-vectors are orthogonal

Or

A sequencing problem involving six jobs and three machines requires evaluation of :

- $(A) \ \ (6!)^3 \ \ sequences$
- (B) (6! + 6! + 6!) sequences
- (C) $(6 \times 6 \times 6)$ sequences
- (D) (6 + 6 + 6) sequences
- 41. Let D be the derivative d/dt,
 f(t) = 3sin t + 5cos t. The co-ordinates of Df(t) with respect to the basis {sin t, cos t} are :
 - (A) (-5, 3)
 - (B) (5, 3)
 - (C) (3, 5)
 - (D) (3, -5)

Or

Probability sampling is the procedure that gives all units :

- (A) an equal, calculable and nonzero chance to be selected
- (B) a chance to be included in the study
- (C) an equal chance to be selected
- (D) an equal chance to be selected or not to be selected
- 42. Let T be a linear operator on a finite dimensional vector space V and let W be a subspace of V. Then :
 - (A) dim W = dim V = dim V/W
 - (B) every basis of V/W can be constituted with only elements of W
 - (C) dim V \geq dim W + dim V/W

(D)
$$\frac{W}{W \cap \ker T} \cong T(W)$$

Or

In stratified sampling, the strata :

- (A) are equal in size to each other
- (B) are proportionate to the unitsin the target population
- (C) are disproportionate to the unitsin the target population
- (D) can be proportionate or disproportionate to the units in the target population
- 43. Let V be an inner product space over F and $u, v \in V$, then which one of the following is *false* ?
 - (A) $||u + v||^2 + ||u v||^2 = 2||u||^2 + 2||v||^2$
 - (B) $|\langle u, v \rangle| \le ||u||$. ||v||
 - (C) $||u|| ||v|| \le ||u v||$
 - (D) $||u v|| \ge ||u|| + ||v||$

Or

A researcher chose the respondents of his study by interviewing a few available couples and by obtaining names of new couples from the previous respondents. This procedure is called :

- (A) Systematic Sampling
- (B) Convenient Sampling
- (C) Quota Sampling
- (D) Snowball Sampling
- 44. If the number of constants to be eliminated from the given relation is greater than the number of independent variables, then the equation obtained is a :
 - (A) linear equation of first order
 - (B) non-linear equation of second order
 - (C) second order partial differential equation
 - (D) non-linear partial differential equation of first order

Or

A wholesale distributor has found that the amount of a customer's order is a normal random variable with a mean of Rs. 2,000 and a standard deviation of Rs. 500. What is the probability that the total amount in a random sample of 20 orders is greater than Rs. 45,000 ?

- (A) 0.1915
- (B) 0.3085
- (C) 0.0125
- (D) 0.0228
- 45. The order of the differential equation of the family of all ellipses is :
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4

Or

The sampling distribution of the mean refers to :

- (A) the distribution of various sample sizes which might be used in a given study
- (B) the distribution of different possible values of the sample mean together with their respective probabilities of occurrence
- (C) the distribution of the values of the items in the population
- (D) the distribution of the values of the items actually selected in a given sample
- 46. Let $W(\phi_1, \phi_2)(x)$ be the Wronskian of two linearly independent solution ϕ_1, ϕ_2 of constant coefficient equation L(y) = 0 on I. Then :
 - (A) $W(\phi_1, \phi_2) (x) = 0 \Rightarrow$ $W(\phi_1, \phi_2) (x_0) = 0$ for some $x_0 \in I$
 - (B) $W(\phi_1, \phi_2) (x_0) = 0 \Rightarrow$ $W(\phi_1, \phi_2) (x) = 0 \forall x \in I$

(C)
$$W(\phi_1, \phi_2) (x) = 0 \Leftrightarrow$$

 $W(\phi_1, \phi_2) (x_0) = 0$

(D) (A), (B) and (C) are not true

Or

Principal component analysis will *not* be affected if :

- (A) variables are standardized
- (B) variables are studentized
- (C) there is a change of origin but not a change of scale
- (D) variables are subjected to a linear transformation
- 47. The solution of the differential equation y'' + 4y' + 3y = 0 is :
 - (A) continuous and infinitely differentiable
 - (B) continuous and unbounded
 - (C) continuous but not differentiable
 - (D) unbounded but infinitely differentiable

Or

Hotelling T^2 test can be used for testing :

- (A) a general linear hypothesis in the mean vector
- (B) an arbitrary hypothesis about the mean vector
- (C) simultaneous hypotheses about the mean vectors
- (D) two-sided hypothesis in the mean vector

- 48. Let $y = x^2 \sin x$ be a solution of a homogeneous initial value problem. Then the least possible order of the differential equation is :
 - (A) 3
 - (B) 4
 - (C) 5
 - (D) 6

Or

Which of the following statements is *not* true about a Poisson Probability Distribution with parameter λ ?

- (A) The mean of the distribution is λ
- (B) The standard deviation of the distribution is the positive square root of λ
- (C) The parameter λ must be greater than zero
- (D) The parameter λ is coefficient of variation

- 49. Let f(x, y, z, p, q) = 0 be a first order partial differential equation. Then the relation between the variables involving as many arbitrary constants as there are independent variables is called :
 - (A) general integral
 - (B) singular integral
 - (C) complete integral
 - (D) particular solution

Or

Suppose the sequences $\{X_n\}$ and $\{Y_n\}$ of r.v.s are such that $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{P} Y$ as $n \to \infty$ and suppose P[Y = 3] = 1. Which of the following is *correct* ?

- (A) $X_n + Y_n \xrightarrow{P} X + 3 \text{ as } n \to \infty$ (B) $X_n Y_n \xrightarrow{P} 3X \text{ as } n \to \infty$
- (C) $Y_n \cos(X_n) \xrightarrow{d} 3\cos(X)$ as $n \to \infty$
- (D) $Y_n X_n^2 \xrightarrow{d} 3X^2$ as $n \to \infty$

50. For the differential equation :

$$\left(1-x^2\right)y''-2xy'+y=0$$

- (A) x = 1 is a regular singular point
 and x = -1 is irregular singular
 point
- (B) x = 1 and x = -1 are regular singular points
- (C) x = -1 is a regular singular point and x = 1 is irregular singular point
- (D) x = 1 and x = -1 are ordinary points

Or

The mean and variance of 25 is :

- (A) Mean = 25, Variance = 1
- (B) Mean = 25, Variance = 0
- (C) Mean = 25, Variance = $\frac{1}{25}$
- (D) Mean = 25 and Variance cannot be found

ROUGH WORK

NOV - 30211/II

ROUGH WORK

			Fest Booklet No. प्रश्नपत्रिका क्र.	F	
Sign	ature of Invigilators				
2			Seat No.		
	MATHEMATICAL S	CIE	NCES (In figur	es as in Admit Card)	
	Paper II		Seat No. (In words)		
NC	DV-30211				
			_		
		Α	inswer Sheet No.		
Tim	e Allowed : 75 Minutes]		[Ma:	ximum Marks : 100	
	Number of Pages i	n this			
	Instructions for the Candidates		परीक्षार्थींसा	री गनग	
1.	Write your Seat Number in the space				
	provided on the top of this page. Write	1.		पऱ्यात आपला आसन क्रमांक	
	your Answer Sheet No. in the space		तसेच आपणास दिलेल	त्या उत्तरपत्रिकेचा क्रमांक	
	provided for Answer Sheet No. on the		त्याखाली लिहावा.		
	top of this page.	2.	प्रश्नपत्रिका क्रमांक OI	AR उत्तरपत्रिकेवर दिलेल्या	
2.	Write and darken Test Booklet No. on		रकान्यात लिहून त्याप्रमा		
	OMR Answer Sheet.				
3.	This paper consists of Fifty (50)	3.	या प्रश्नपत्रिकेत पन्नास	-	
4	multiple choice type of questions.	4.	(B), (C) आणि (D) अशी		
4.	Each item has four alternative responses marked (A), (B), (C) and (D).		चार विकल्प उत्तरे दिली 🤅	आहेत. त्यातील योग्य उत्तराचा	
	You have to darken the responses as		रकाना खाली दर्शविल	याप्रमाणे ठळकपणे काळा	
	indicated below on the correct		करावा.		
	response against each item.		0		
	Example: $(A \cap B) \oplus (D)$		उदा.		
	Where (C) is the correct response.		जर (C) हे योग्य उत्तर अ		
5.	Your responses to the items for this	5.		ांची उत्तरे उत्तरपत्रिकेमध्येच	
	paper are to be indicated on the		द्यावीतः उत्तराच्या रकान	यामध्ये (×) () (/) व	
	Answer Sheet only. Responses like (\times)		अस्पष्टपणे काळे केले	ले उत्तर ग्राह्य धरले जाणार	
	()(/) and light shaded responses		नाही.		
0	will not be considered/evaluated.	6.	आत दिलेल्या सूचना क	क्रिजीपर्वक ताचात्यात	
6.	Read instructions given inside			पत्रिकेच्या शेवटी कोरे पान	
7.	carefully. One Sheet is attached at the end of the	7.		पात्रकच्या शवटा कार पान	
1.	booklet for rough work.		जोडले आहे.		
8.	You should return the test booklet and	8.	या पेपरची परीक्षा सं	पल्यानंतर प्रश्नपत्रिका व	
0.	answer sheet both to the invigilator		उत्तरपत्रिका दोन्ही पर्यवे	क्षकांना परत करावी. यातील	
	at the end of the paper and should not			॥ बरोबर परीक्षा केंद्राबाहेर	
	carry any paper with you outside the		नेण्यास सक्त मनाई आहे		
	examination hall.				
9.	Answers marked on the body of the	9.	-	ली उत्तरे तपासली जाणार	
	question paper will not be evaluated.		नाहीत.		