Chemical Science Paper III

Time Allowed : 2½ Hours][Maximum Marks : 150Note : This Paper containsSeventy Five (75) multiple choice questions, each
question carryingTwo (2) marks. Attempt All questions.

1. An electron of mass 'm' is confined to a 1-D box of length 'L'. It makes a radiative transition from second excited state to ground state. The wavenumber of the photon emitted is :

(A)
$$\frac{h}{mL^2c}$$
 (B) $\frac{2h}{mL^2c}$
(C) $\frac{9h}{mL^2c}$ (D) $\frac{3h}{mL^2c}$

2. The wave function of a 1-D harmonic oscillator between $x = -\infty$ and $x = +\infty$ is given by :

$$\psi(x) = \operatorname{N} \exp\left(-\frac{\beta x^2}{2}\right).$$

$$\left(\operatorname{Given}: \int_{0}^{\infty} e^{-ax^2} dx = \frac{1}{2} \left(\frac{\pi}{a}\right)^{1/2}\right)$$

The value of N, that normalizes the function $\psi(x)$, is :

(A)
$$\left(\frac{\beta}{\pi}\right)^{1/2}$$
 (B) $\left(\frac{\beta}{\pi}\right)^{1/4}$
(C) $\left(\frac{\beta}{2\pi}\right)^{1/2}$ (D) $\left(\frac{\pi}{\beta}\right)^{1/4}$

[P.T.O.

3. The molecular orbitals of 1, 3-butadiene (not in proper order) are given below :

$$(f_1, f_2, f_3, f_4 \text{ are the } 2p_z \text{ orbitals on carbon atoms } 1, 2, 3 \text{ and } 4 \text{ respectively}).$$

 $\psi_1 = 0.372f_1 - 0.602f_2 + 0.602f_3 - 0.372f_4.$
 $\psi_2 = 0.602f_1 + 0.372f_2 - 0.372f_3 - 0.602f_4.$
 $\psi_3 = 0.372f_1 + 0.602f_2 + 0.602f_3 + 0.372f_4.$
 $\psi_4 = 0.602f_1 - 0.372f_2 - 0.372f_3 + 0.602f_4.$

The HOMO and LUMO in the ground state of 1, 3-butadiene are respectively :

- $(A) \quad \psi_2 \ \text{and} \ \psi_3 \qquad \qquad (B) \quad \psi_3 \ \text{and} \ \psi_2$
- (C) ψ_2 and ψ_4 (D) ψ_2 and ψ_1

4. The $J = 0 \rightarrow 1$ rotational transition for $H^{79}Br$ occurs at 500.72 GHz. Assuming the molecule to be a rigid rotor, the $J = 4 \rightarrow 5$ transition occurs at :

- (A) 50.1 cm^{-1} (B) 66.8 cm^{-1}
- (C) 16.7 cm^{-1} (D) 83.5 cm^{-1}

5. The following data are obtained for the vibration-rotation spectrum of a diatomic molecule :

J	$\overline{\nu} [R(J)] / cm^{-1}$	$\overline{\nu} \big[P \big(J \big) \big] / cm^{-1}$
0	2642.60	
1	2658.36	2609.67
2	_	2592.51

The value of the rotational constant \overline{B}_0 in the ground vibrational state is :

(A)	$8.12 { m cm}^{-1}$	(B)	$8.35~\mathrm{cm}^{-1}$

- (C) 8.58 cm^{-1} (D) 7.88 cm^{-1}
- 6. Assuming H_2 and HD molecules having equal bond lengths, the ratio of rotational partition functions of these molecules using high temperature approximation is :

(A)	3/8			(B)	3/4

- (C) 1/2 (D) 2/3
- 7. Which of the following statements is *not* true for entropy production in a system ?
 - (A) Rate of entropy production in a system is a product of flux and driving force.
 - (B) Rate of entropy production is always positive for a spontaneous process.
 - (C) Rate of entropy production is always negative for a spontaneous process.
 - (D) Rate of entropy production is zero at equilibrium.

8. The Slater determinant (un-normalized) for the ground state of lithium atom is :

$$(A) \begin{bmatrix} 1s(1)\alpha(1) & 1s(1)\beta(1) & 2s(1)\alpha(1) \\ 1s(2)\alpha(2) & 1s(2)\beta(2) & 2s(2)\alpha(2) \\ 1s(3)\alpha(3) & 1s(3)\beta(3) & 2s(3)\alpha(3) \end{bmatrix}$$

$$(B) \begin{bmatrix} 1s(1)\alpha(1) & 1s(1)\beta(1) & 1s(1)\alpha(1) \\ 1s(2)\alpha(2) & 1s(2)\beta(2) & 1s(2)\alpha(2) \\ 1s(3)\alpha(3) & 1s(3)\beta(3) & 1s(3)\alpha(3) \end{bmatrix}$$

$$(C) \begin{bmatrix} 1s(1)\alpha(1) & 1s(1)\beta(1) & 1s(1)\beta(1) \\ 1s(2)\alpha(2) & 1s(2)\beta(2) & 1s(2)\beta(2) \\ 1s(3)\alpha(3) & 1s(3)\beta(3) & 1s(3)\beta(3) \end{bmatrix}$$

$$(D) \begin{bmatrix} 1s(1)\alpha(1) & 2s(1)\alpha(1) & 2s(1)\beta(1) \\ 1s(2)\alpha(2) & 2s(2)\alpha(2) & 2s(2)\beta(2) \\ 1s(3)\alpha(3) & 2s(3)\alpha(3) & 2s(3)\beta(3) \end{bmatrix}$$

- 9. If the $t_{1/2}$ of a radioactive element is 10 d, the number of days required to reduce it to 1/8th of its original value is :
 - (A) 10 d (B) 20 d
 - (C) 30 d (D) 80 d

- 10. In the reaction $N_2O_4(g) \leftrightarrow 2NO_2(g)$ an increase in pressure would result in :
 - (A) Increase in the amount of product
 - (B) Increase in the amount of reactant
 - (C) Have no effect on equilibrium
 - (D) Initial increase and then decrease in the amount of product formed.
- 11. The pressure just below the meniscus of water is :
 - (A) Greater than just above it.
 - (B) Less than just above it.
 - (C) Same as just above it.
 - (D) Always equal to atmospheric pressure.
- 12. Bakelite is obtained by reaction between :
 - (A) Phenol and formaldehyde (B) Benzene and formaldehyde
 - (C) Benzophenol and acetic acid (D) Phenol and acetic acid
- 13. The boiling temperature of ethyl benzene is 136°C. Use Trouton's rule to determine the enthalpy of vaporization of ethyl benzene at this temperature :

(A)	$35~{ m kJ}~{ m mol}^{-1}$	(B)	$12 \mathrm{~kJ~mol^{-1}}$
(C)	$23~{ m kJ}~{ m mol}^{-1}$	(D)	4.8 kJ mol^{-1}

14. The isotope used for diagnosing hyperthyroiditis is :

- (A) ^{125}I (B) ^{127}I
- (C) ^{130}I (D) ^{128}I
- 15. Reaction quotient for the reaction, $4NH_3(g)$ + $5O_2(g)$ \rightarrow 4NO(g) + $6H_2O(g)$ is given as :

(A)
$$Q = \frac{p_{NO}^4 \cdot p_{H_2O}^6}{p_{NH_3}^4 \cdot p_{O_2}^5}$$
(B)
$$Q = \frac{[NO]^4 [H_2O]^6}{[NH_3]^4 \cdot [O_2]^5}$$
(C)
$$Q = \frac{a_{NO}^4 \cdot a_{H_2O}^6}{a_{NH_3}^4 \cdot a_{O_2}^5}$$
(D)
$$Q = \frac{m_{NO}^4 \cdot m_{H_2O}^6}{m_{NH_3}^4 \cdot m_{O_2}^5}$$

16. In the following phase diagram, phase of a substance marked as point A will be :

17. Plots of $\log \gamma \pm vs. \sqrt{c}$ for the electrolytes; MgSO₄, NaCl and MgCl₂ are given below. Base on that the plots marked as (I), (II) and (III) belong to :

- (A) $I = MgSO_4$, $II = NaCl and III = MgCl_2$
- (B) $I \equiv NaCl, II \equiv MgCl_2 \text{ and } III \equiv MgSO_4$
- (C) I = MgCl₂, II = NaCl and III = MgSO₄
- (D) $I = MgSO_4$, $II = MgCl_2$ and III = NaCl

18. The galvanic cell, $\operatorname{Cr} |\operatorname{Cr}^{2+}(\operatorname{aq.})| \operatorname{Ag}^{+}(\operatorname{aq.})| \operatorname{Ag}$ is short-circuited and current is allowed to pass through it spontaneously. The changes in concentrations of Cr^{2+} and Ag^{+} , and masses of electrodes will be in the following order :

[Cr ²⁺]	[Ag ¹⁺]	Mass of Ag	Mass of Cr
		electrode	electrode
decrease	decrease	increase	increase
decrease	increase	decrease	increase
increase	decrease	increase	decrease
increase	increase	decrease	decrease
	[Cr²⁺] decrease decrease increase increase	[Cr ²⁺][Ag ¹⁺]decreasedecreasedecreaseincreaseincreasedecreaseincreaseincrease	[Cr2+][Ag1+]Mass of Ag electrodedecreasedecreaseincreasedecreaseincreasedecreaseincreasedecreaseincreaseincreasedecreaseincreaseincreaseincreasedecrease

19. For the oscillating reaction having Lotka-Volterra mechanism,

$$A + X \xrightarrow{k_1} 2X$$
$$X + Y \xrightarrow{k_2} 2Y$$

 $Y \xrightarrow{R_3} Z$

The concentration of the reactant 'A' will :

- (A) Oscillate with time.
- (B) Increase exponentially with time and remain constant.
- (C) Remain constant throughout the reaction.
- (D) Decrease exponentially with time and will become zero.
- 20. Consider the equilibrium reaction,

$$\mathrm{H^{+}}\left(\mathrm{aq.}\right)$$
 + $\mathrm{OH^{-}}\left(\mathrm{aq.}\right)$ $\xleftarrow{k_{1}}{\longleftarrow}$ $\mathrm{H_{2}O}(\mathrm{l})$

The rate constants k_1 and k_{-1} are estimated by :

- (A) Laser flash photolysis (B) Fast acid-base titration
- (C) Temperature jump method (D) Time resolved pH metry
- 21. For the reaction $X + Y + Z \rightarrow P$, the experimental data for the measured initial rates are given below :

Run	$\left[\mathbf{X} ight]_{0}$, $\left(\mathbf{M} ight)$	$\left[\mathbf{Y}\right]_{0}, \left(\mathbf{M}\right)$	$\left[\mathbf{Z}\right]_{0}$, (\mathbf{M})	Initial Rates $R_0 (Ms^{-1})$
1	0.2	0.5	0.4	$8.0 imes 10^{-5}$
2	0.4	0.5	0.4	$3.2 imes 10^{-4}$
3	0.4	2.0	0.4	$1.28 imes 10^{-3}$
4	0.2	0.5	1.6	$3.2 imes 10^{-4}$

Orders of the reaction w.r. to X, Y and Z are :

(A)	2, 2, 1	(B)	2, 1, 2
(C)	2, 1, 1	(D)	1, 1, 2

22.According to the transition state theory for the elementary bi-molecular reactions, the molar entropy of activation $\ \Delta S_0^{\neq}$ is :

- negative (A)
- (B) positive
- (C) zero
- (D) positive for endothermic and negative for exothermic reactions
- 23.For the chemical equilibrium,

$$A \rightleftharpoons B$$

The plot of Gibbs free energy of the system (G_{sys}) vs. extent of reaction is shown below :

Point P, marked in the plot, corresponds to :

(A) $\mu_A > \mu_B$ **(B)** $\mu_B > \mu_A$

(C) $\mu_A = \mu_B$ (D) $\mu_A = \mu_B = 0$ The ¹⁹F NMR spectrum of ClF₃ exhibits a 1 : 1 doublet and a 1 : 2 : 1 triplet. The structure of ClF₃ will be : 24.

(Natural abundance of 19 F is 100%, ignore coupling with Cl nucleus.)

[P.T.O.

25. The Mössbauer spectrum of a foil of iron enriched with ⁵⁷Fe exhibits a single signal at zero velocity, when the spectrum is recorded in an applied magnetic field, it changes to a spectrum.

(Given : I values of 57 Fe is 1/2 and 3/2 in the ground and excited states respectively.)

- (A) Two lines (B) Three lines
- (C) Four lines (D) Six lines
- 26. The formation of Schottky defects should result in :
 - (A) The contraction of crystal lattice
 - (B) Decrease in the density of the crystal
 - (C) Decrease in electrical conductivity
 - (D) Increase in volume
- 27. The addition of gallium impurity to silicon results in :
 - (A) Decrease in the band gap
 - (B) Increase in the band gap
 - (C) Addition of a new intermediate band with electrons
 - (D) Addition of a new intermediate band with holes
- 28. Which statement most *correctly* describes crystal field theory for a *d*-block complex of unspecified geometry ?
 - (A) The theory considers covalent interaction between a metal centre and the surrounding ligands.
 - (B) The theory considers electrostatic interaction between a metal ion and the surrounding ligand which are taken to be point charges.
 - (C) The theory rationalizes the non-degeneracy of the metal-orbitals by considering the electrostatic repulsions between point charge ligands and electrons in the metal d-orbitals.
 - (D) The theory rationalizes the metal *d*-orbitals are split into two levels.

29. For which pair of the complexes is the order of values of Δ_{oct} correct ?

(A)
$$\left[\operatorname{Rh}\left(\operatorname{NH}_{3}\right)_{6}\right]^{3+} > \left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{6}\right]^{3+}$$

(B) $\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{4-} > \left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{3-}$

(C)
$$\left[\operatorname{Cr}(\operatorname{H}_{2}\operatorname{O})_{6}\right]^{2+} > \left[\operatorname{Cr}(\operatorname{H}_{2}\operatorname{O})_{6}\right]^{3+}$$

(D)
$$\left[\operatorname{CrF}_{6}\right]^{3-} > \left[\operatorname{Cr}\left(\operatorname{CN}\right)_{6}\right]^{3-}$$

- 30. $\left[Cr(CN)_{6} \right]^{3-}$ is expected to be :
 - (A) Diamagnetic
 - (B) Paramagnetic with μ_{eff} < 3.87 BM
 - (C) Paramagnetic with $\mu_{eff} > 3.87$ BM
 - (D) Paramagnetic with $\mu_{eff} \approx 3.87$ BM

31. The reaction of
$$[PtCl_4]^{2-}$$
 with $[NO_2]^-$ followed by NH_3 gives :

(A) trans-
$$\left[PtCl(NH_3)(NO_2)_2\right]^-$$
 (B) trans- $\left[PtCl_2(NH_3)(NO_2)\right]^-$

(C)
$$\operatorname{cis-}\left[\operatorname{PtCl}\left(\operatorname{NH}_{3}\right)_{2}\left(\operatorname{NO}_{2}\right)\right]^{2-}$$
 (D) $\operatorname{cis-}\left[\operatorname{PtCl}_{2}\left(\operatorname{NH}_{3}\right)\left(\operatorname{NO}_{2}\right)\right]^{-}$

- 32. Which of the following complexes has the maximum number of unpaired electrons ?
 - (A) $[FeCl_4]^-$ (B) $[VO(H_2O)_5]^{2+}$ (C) $Hg[Co(NCS)_4]$ (D) $[Co(NH_3)_6]^{3+}$

33. The bright yellow colour of $[Cu(phen)_2]^+$ (phen = 1, 10-phenanthroline) is due to :

- (A) d-d transitions
- (B) intraligand charge transfer transition
- (C) LMCT transition
- (D) MLCT transition

34. The rate of oxygen atom transfer from various oxyhalides follows the order :

(iii)

 B_6H_{10}

- (A) $\operatorname{ClO}_{4}^{-} < \operatorname{ClO}_{3}^{-} < \operatorname{ClO}^{-}$ (B) $\operatorname{IO}_{4}^{-} < \operatorname{BrO}_{4}^{-} < \operatorname{ClO}_{4}^{-}$
- (C) $\text{ClO}^- < \text{ClO}_3^- < \text{ClO}_4^-$ (D) $\text{ClO}^- < \text{ClO}_4^- < \text{BrO}_4^-$
- 35.
 - Identify the following boranes with their class of boranes :
 - (a) closo (i) B_6H_{12} (b) nido (ii) $(B_6H_6)^{2-}$

 - (c) arachno
 - (A) (a)—(iii), (b)—(i), (c)—(ii)
 - (B) (a)—(i), (b)—(iii), (c)—(ii)
 - (C) (a)—(ii), (b)—(i), (c)—(iii)
 - (D) (a)—(ii), (b)—(iii), (c)—(i)

36. The structure of $[IF_6]^-$ is best described as :

- (A) trigonally distorted octahedron
- (B) octahedron
- (C) square pyramid
- (D) trigonal bipyramid
- 37. Among the following statements :
 - (a) Orthosilicates have general formula $(SiO_4)^{4-}$
 - (b) $BaTiSi_3O_9$ is an example for cyclosilicate
 - (c) $Si_2O_7^{6-}$ is an orthosilicate
 - (d) ZrSiO₄ is a pyrosilicate
 - (A) (a), (b) are correct (B) (a), (c) are correct
 - (C) only (a) is correct (D) (c), (d) are correct

38. The type of hybridisation of carbon in carbon nanotube is :

- sp and sp^2 (B) sp^2 and sp^3 (A)
- (D) sp, sp^2 and sp^3 sp and sp^3 (C)

39. Which one of the following pairs consists of the naturally occurring actinides ?

- Th, Po (A) Am, Cf (**B**)
- (C) Th, U U, Am (D)

40. In the ion exchange separation of lanthanides :

> (A) La(III) gets eluted first because of its larger size

- (B) La(III) gets eluted first because of the smaller size of its hydrated ions
- (C) Lu(III) gets eluted first because of the larger size of its hydrated ions
- (D) Lu(III) gets eluted first because of its smaller size
- 41. Identify the type of the reaction given below :

42. Which of the following can act as an oxidising agent ?

(A) $\left[Mo(\eta^5 - C_5 H_5)_2 \right]$ (B) $\left[Fe(\eta^5 - C_5 H_5)_2 \right]$ (C) $\left[Co(\eta^5 - C_5 H_5)_2 \right]$ (D) $\left[Ru(\eta^5 - C_5 H_5)_2 \right]$

43. The correct order of the strength of M-C bond in the given carboxyls is :

(A)
$$\left[V(CO)_{6} \right]^{-} > \left[Cr(CO)_{6} \right] > \left[Mn(CO)_{6} \right]^{+}$$

- (B) $\left[\operatorname{Cr}(\operatorname{CO})_{6}\right] < \left[\operatorname{Mn}(\operatorname{CO})_{6}\right]^{+} < \left[\operatorname{V}(\operatorname{CO})_{6}\right]^{-}$
- (C) $\left[\operatorname{Cr}(\operatorname{CO})_{6} \right] > \left[\operatorname{Mn}(\operatorname{CO})_{6} \right]^{+} > \left[\operatorname{V}(\operatorname{CO})_{6} \right]^{-}$

(D)
$$\left[V(CO)_{6} \right]^{-} < \left[Cr(CO)_{6} \right] < \left[Mn(CO)_{6} \right]^{+}$$

44. In deoxymyoglobin the iron centre is best described as :

- (A) low-spin Fe(III) (B) low-spin Fe(II)
- (C) high-spin Fe(II) (D) high-spin Fe(III)

45. Which of the following copper biomolecules is EPR silent ?

- (A) superoxide dismutase (B) oxyhemocyanin
- (C) plastocyanin (D) nitrite reductase

46. The active site structure of Rieske protein can be best described as :(cys = cysteine and his = histidine)

 $(A) \quad \left\{ Fe\left(cys\right)_{4} \right\} \qquad \qquad (B) \quad \left\{ Fe_{2}S_{2}\left(cys\right)_{4} \right\}$

(C)
$$\left\{ \operatorname{Fe}_{2}\operatorname{S}_{2}\left(\operatorname{cys}\right)_{2}\left(\operatorname{his}\right)_{2} \right\}$$
 (D) $\left\{ \operatorname{Fe}_{4}\operatorname{S}_{4}\left(\operatorname{cys}\right)_{4} \right\}$

47. The separation between E_1 and E_3 in the following energy level diagram will be :

- 48. The amount of $Na_2SO_4 \cdot 4H_2O$ (MW = 214.14) required to prepare a litre of one molar Na solution is :
 - $(A) \qquad 214.14 \ g \qquad \qquad (B) \qquad 107.07 \ g$
 - $(C) \qquad 21.414 \ g \qquad \qquad (D) \qquad 10.707 \ g$
- 49. Which of the following molecules contains the highest % of nitrogen by mass ?
 - (A) HNO₃ (B) LiNO₃
 - (C) NaNO₃ (D) KNO₃

(Given : M.W. $CaCO_3 = 100.0$)

- (A) 75% (B) 45%
- (C) 55% (D) 50%
- 51. On a 30 cm column, the retention times t_r of A and B are 16.40 and 17.63 minutes respectively. The average number of plates in the column are 3000. The plate height will be :
 - (A) 1.00 (B) 0.01
 - (C) 100 (D) 30
- 52. Twenty ml of an aqueous solution of 0.1 M benzoic acid is mixed with 10 ml ether. After the layers are separated it is determined by titration that 0.5 M benzoic acid remains in the aqueous layer. The distribution ration and % E are :
 - (A) 3,50% (B) 4,60%
 - (C) 6,75% (D) 10,25%

53. Which of the following compounds is not aromatic in nature ?

- (A) Cyclopentadienyl anion (B) Pyrrole
- (C) Fullerene C₆₀ (D) Azulene

54. Choose the *correct* option as indicated in series given below :

55. Predict the stereochemical outcome of the following reaction :

56. Study the following reaction sequence involved in the synthesis of (–)-menthol and choose the *correct* description for the same :

- 57. In a Shapiro reaction, using 2-octanone, [p-tolunesulfonylhydrazone of 2-octanone treated with CH_3Li], the product obtained is :
 - (A) 1-octene (B) (E)-2-octene
 - (C) (Z)-2-octene (D) (Z)-3-octene
- 58. Study the following chemical conversion :

- (A) Michael addition followed by cyclization
- (B) First aldol reaction followed by Michael addition
- (C) Two intramolecular aldol condensations
- (D) First Michael addition followed by intramolecular aldol condensation

- 59. Hammett plots provide useful information about several aspects of a reaction. Match the following aspects regarding reaction constant, ρ and substituent constant, σ , and reactions given.
 - (L) Acid catalyzed hydrolysis of (1) Reaction proceeds by $S_N 1$ ethyl benzoates ($\rho = 0.03$) pathway
 - (M) Base catalyzed hydrolysis of (2) Rate accelerated by *meta*ethyl benzoates ($\rho = 2.51$) methoxy substituent and rate retarded by *para*-methoxy substituent
 - (N) Solvolysis of benzyl tosylates (3) Indication of two different RDS $(\rho = -5.6)$ for EDG and EWG
 - (O) Reaction with different signs (4) Reaction largely unaffected by for ρ for EDG and EWG polar effects of substituents
 - (A) (L)-(1), (M)-(2), (N)-(3), (O)-(4)
 - (B) (L)-(1), (M)-(4), (N)-(3), (O)-(2)
 - (C) (L)-(4), (M)-(2), (N)-(1), (O)-(3)
 - (D) (L)-(2), (M)-(1), (N)-(3), (O)-(4)

[P.T.O.

60. Study the following reaction :

- (I) The *exo* norbornyl brosylate reacts 350 times faster than the *endo* nor bornyl brosylate.
- (II) Both exo and endo brosylates produce exclusively exo norbornyl acetate.
- (III) Enantiomerically pure *exo* norbornyl brosylate produces 100% racemic product.
- (IV) Enantiomerically pure *endo* norbornyl brosylate produces which is slightly non-racemic [%ee < 10%].

Based on these observations, state which of the following statements correctly summarized the above.

- (A) Exo-norbornyl brosylate undergoes the reaction with formation of non-classical carbocation and *endo* norbornyl brosylate reacts entirely by S_N^2 mechanism.
- (B) Both *exo* and *endo* isomers entirely react by formation of classical carbocation.
- (C) Exo-isomer undergoes reaction entirely by $S_N 1$ and endo-isomer undergoes reaction by entirely $S_N 2$ mechanism.
- (D) Exo-isomer undergoes reaction entirely via formation of non-classical carbocation and *endo*-isomer undergoes reaction partially by S_N^2 mechanism and mostly via formation of classical carbocation.

61. Study the following reaction and identify the processes involved :

- (A) 4 pi electron thermal con-rotatory elecrocyclic reaction.
- (B) 4 pi electron photochemical dis-rotatory electrocyclic reaction.
- (C) (2 pi + 2 pi) photochemical cycloaddition reaction.
- (D) (2 pi + 2 pi) thermal cycloaddition reaction.
- 62. Identify the structures of missing X and Y components in the following Diels-Alder reaction :

 $\mathbf{23}$

(B)
$$X = H_3C$$
 and $Y =$

Ph

(D)
$$X =$$
 and $Y =$ CH_3

63.	The order of increasing reactivity towards nitration is :		
	(A)	Pyridine < quinoline < quinoline-N-oxide	
	(B)	Quinoline < pyridine < quinoline-N-oxide	
	(C)	Quinoline-N-oxide < pyridine < quinoline	
	(D)	Quinoline < quinoline-N-oxide < pyridine	
64.	Bischler-Napieraski reaction is used for the synthesis of :		
	(A)	Quinoline (B) Isoquinoline	
	(C)	Substituted pyrrole (D) 2-Methyl quinoline	
65.	In the synthesis of Ph—CO—CH ₂ —CH ₂ —CHO using diathiane following		
	reagents are used :		
	(A)	(i) NaOMe, (ii) $CH_2 = CH_CO_Ph$, (iii) H^+ , (iv) $HgCl_2/H^+$	
	(B)	(i) n-BuLi, (ii) $CH_2 = CH$ —CO—Ph, (iii) H^+ , (iv) $HgCl_2/H^+$	
	(C)	(<i>i</i>) NaOMe, (<i>ii</i>) Ph—CH = CH—CHO, (<i>iii</i>) H ⁺ , (<i>iv</i>) HgCl ₂ /H ⁺	
	(D)	(i) <i>n</i> -BuLi, (ii) $CH_2 = CH_CO_Ph$, (iii) H^+	

- 66. Prevost and Woodward reactions are useful for formation of 1, 2-diols with opposite stereoselectivities. Which of the following statements is *correct* regarding these reactions ?
 - (A) Prevost and Woodward reactions both employ iodine and silver carboxylate. In Prevost dry conditions yield *trans*-1, 2-diol whereas in Woodward reaction *cis*-1, 2-diol is formed in presence of moisture.
 - (B) Prevost and Woodward reactions both employ iodine and silver carboxylate. In Woodward reaction dry conditions yield *cis*-1, 2-diol whereas in Prevost reaction *trans*-1, 2-diol is formed in presence of moisture.
 - (C) Prevost and Woodward reactions both employ iodine and silver carboxylate. In Prevost reaction dry conditions yield *cis*-1, 2-diol whereas in Woodward reaction *trans*-1, 2-diol is formed in presence of moisture.
 - (D) Prevost and Woodward reactions both employ iodine and silver carboxylate. In Prevost reaction *cis*-1, 2-diol in presence of moisture whereas in Woodward reaction dry conditions yield *trans*-1, 2-diol.

67. The major conformer of 2, 3, 4-tri-O-acetyl-β-D-xylopyranosyl chloride in CHCl₃
is Y with all four groups 'axial'. This is due to the,

68. Many of the natural product biosyntheses involve shikimic acid pathway. Biosynthesis of one of the following compounds does *not* involve the shikimic acid pathway. Identify the compound :

FEB - 33313/III

The structure of starting material A in the following photochemical Norrish 69. type reaction is :

- 71. Protection-deprotection and coupling between two amino acids components are important steps in peptide synthesis. One of the following is *not* used as a protecting group in the peptide synthesis. Identify which :
 - (A) Benzoyloxycarbonyl
 - (B) N, N'-dicyclohexylcarbodiimide (DCC)
 - (C) 9-Flourenylmethoxycarbonyl (FMOC)
 - (D) tert-Butoxycarbonyl (BOC)
- 72. The structure of the dipeptide Ala-Pro derived from the natural amino acids is :

- 73. The proton NMR of 2-bromo-2-methyl propane will show :
 - (A) Three quartets and a singlet
 - (B) Two doublets and a singlet
 - (C) Two singlets
 - (D) One singlet

74. The ratio of relative intensities of three molecular ion peaks of CH_2Br_2 in the mass spectrum is :

- (A) M^+ : $(M + 2)^+$: $(M + 4)^+ = 1:4:1$
- (B) $M^+: (M + 2)^+: (M + 4)^+ = 1:3:1$
- (C) $M^+: (M + 2)^+: (M + 4)^+ = 1:2:1$
- (D) $M^+: (M + 2)^+: (M + 4)^+ = 1:1:1$

75. The number of signals that appear in the PND spectrum of phenanthrene and anthracene respectively are :

- (A) Ten and four (B) Ten and ten
- (C) Seven and four (D) Seven and seven

ROUGH WORK